352 resultados para Transferência de calor na madeira
Resumo:
De todas as operações, a agitação de fluidos, a troca de calor em tanques e a mistura de pós são, sem dúvida, as mais usuais, principalmente, na indústria de alimentos. Embora exigindo um estudo em separado, é comum estas operações unitárias estarem presentes, em instantes diferentes, no mesmo processo de fabricação. O propósito deste trabalho é enfatizar procedimentos de projeto para problemas práticos nas indústrias de processos envolvendo estas três operações. O modelo matemático proposto para a agitação de fluidos foi aplicado na substituição das tradicionais âncoras por impelidores de pás retas e inclinadas no processamento do suco concentrado de laranja. Observou-se que o tempo de permanência do suco no tanque de resfriamento caiu de quarenta para cinco minutos em decorrência da maior ação de mistura provocada pelas pás retas. O modelo proposto acompanha bem as exigências de potências requeridas pelo suco na medida em que é resfriado...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Transport is one the essential services for the development of most economic activities. In the forestry sector, the main transport used to carry wood from the forest to local consumption is road. The transport increases the producing costs of wood and may be responsible of a high percentage in the final price of the wood sold in the industry. To reduce the company’s costs and increase the efficiency of forest production those transport activities must be analyzed and improved. In that context, an economic analysis is the main objective of this work, evaluating three different types of log transport from a sawmill in São Paulo´s Southwest region. For this, a data collection was done to compound the costs and the incomes of timber transport, and that way, to do the economic analyses of each transport. The monitoring activities were done in the second 2013 half-year and the research achieved economic viability results utilizing tools and methods of Economic Engineering
Resumo:
Products derived from wood or engineered products are becoming interesting alternatives to the replacement of solid wood in various applications, from structural components to the furniture industry and packaging. Among these products, there are panels built by strands, particles and fibers, each one having their particular characteristics and potential of use. Since the different types of panels are produced, waste generation is part of the process, and that more technological it is, it still generates losses of raw materials. Based on the need for rational use of raw materials and using almost full of industrially processed wood, It arises the proposal of this work, which seeks to use waste from the lamination, like pieces of strands, broken strands, strands rough, cracked strands to produce panels with structural characteristics of the OSL panel (Oriented Strand Lumber), LSL (Laminated Strand Lumber) and OSB (Oriented Strand Lumber). Besides the use of waste, this paper seeks an alternative to the use of the adhesive, because the industry uses formaldehyde-based adhesives, which over the press, they emit large amounts of formaldehyde, which is very aggressive to humans and environment. The panels made with polyurethane resin based on castor oil and hot-pressed were characterized by physical and mechanical tests according to specifications of European Standard (EN). High values of tensile strength, elastic modulus and density were found in the results of tests. Adding to stable values of swelling and moisture content, the panel studied adds attractive features to the panel market, especially in the civil construction
Resumo:
Obtaining accurate estimates of the volume of stacked wood is important in view of the increasing value of wood as raw material. Therefore, the forest companies have become increasingly concerned about the methods currently used to convert cubic meters for stereo. In this context, emerged the need of optimizing the measurement process and accuracy of the volume of stacked wood. For this, companies have been testing methods with greater efficiency, speed and low operating cost. Existing methods made through approximate equations, and also by determining the conversion factor, called the stacking factor (Fe), are questioned, due to errors and inaccuracies. The use of digital photographs is an alternative method that would minimize operator intervention, allowing greater control and speed the process, thus eliminating part of the imprecision of the traditional method. The use of the method is viable, due to present an error of about 10% while traditional methods showed an error of 17%
Resumo:
This work is the production of particleboard of particles reconstituted from MDP (Medium Density Particleboard) adding particles in the inner layer of Mimosa Scarelli, popularly known as bracatinga, the ratios of 0%, 25%, 50%, 75% and 100%. The panel produced is composed of three layers, two external particles with smaller particle size and an inner layer composed of particles of larger particle sizes. Assays were performed based on physical and mechanical NBR 14.810/2006 for the determination of the board density, thickness swelling, water absorption, moisture content, bending strength, shear strength and residual moisture, and testing of particle size not existing in the standard cited. The results were analyzed and compared the results of the commercial boards made from 100% eucalyptus, based on the limits specified by the ABNT NBR 14.810/2006. The values of the tests were close to the normative specifications indicating positively the production of MDP with wood decay.
Resumo:
A regulação da temperatura corpórea, diante de variações da temperatura ambiente e/ou da taxa de produção de calor metabólico, envolve mecanismos reguladores da taxa de troca de calor entre o animal e o ambiente. Um destes mecanismos consiste na modulação da temperatura superficial de áreas especificas do corpo do animal, via ajustes vasomotores, que podem atuar tanto no sentido de promover a dissipação de calor (em uma situação de aumento da temperatura) quanto na retenção deste (em uma situação de queda de temperatura). Neste contexto, alguns animais exibem partes do corpo, como orelhas, membros, cauda, etc. que funcionam de maneira otimizada para realizar esta troca de calor. Nestes casos, estas partes são referidas como “janelas térmicas” e possuem em comum três características básicas: 1 - alta área superficial; 2 - baixo isolamento térmico; 3 – boa vascularização e controle do fluxo sanguineo na dependência da temperatura. Recentemente, o uso do bico como uma janela térmica foi descrito para o tucano-toco, Ramphastos toco (Aves, Ramphastidae), revelando ser esta uma estrutura com a maior capacidade de troca térmica já identificada. Naquele estudo, porém, a temperatura superficial das aves (bico) foi monitorada enquanto elas eram submetidas a mudanças bastante lentas (ao longo de várias horas) da temperatura ambiente, de forma que a dinâmica temporal da resposta exibida pelas aves permanecia ainda bastante desconhecida. Além disso, sabe-se que os membros das aves também atuam como importantes vias para troca de calor com o ambiente, e no caso do tucano toco, a regulação da temperatura superficial desses apêndices frente a variações da temperatura não tinha sido estudada. Portanto, o objetivo do presente estudo foi investigar a velocidade com que os ajustes vasomotores subjacentes à modulação... (Resumo completo, clicar acesso eletrônico abaixo)
Análise granulométrica do compósito cimentício produzido com adição de resíduos de madeira e escória
Resumo:
Since the early twenty-first century, the construction sector has been the second largest on the rise in the Brazilian industrial sector, with a growth of 1.4% in 2012, and is likely to remain at this level for a long time. However, unlike decades ago, the industry has been seeking in its manufacturing process, sustainable materials, encompassing in their works the concept of sustainability. Thus, the timber sector seeks to satisfy a market increasingly demanding, innovating techniques and utilization being less aggressive to the environment. The purpose of this study was to produce and evaluate the mechanical strength of the composite cement with the addition of wood residues and slag low oven. Therefore, it was made 42 specimen cement-slag-wood, carried out in two steps. Since at the first, it was varied only the slag particle size, and at the second, through the best result of the previous step, it was varied the wood particles granulometry. The mechanical performance of the composite was evaluated by the results obtained in the compression test and the physical test for determining the density of the material. In the first step of the process can be concluded that the best result was achieved with the use of slag particles retained on the 60 mesh sieve. In the second phase of the study concluded that the best results were achieved with wood particles with the large particles, i.e. particles retained on the 10 mesh sieve. Both in the first and in the second step it can be seen that there has been the influence of the particle size of the waste materials. With the obtained results, could be evaluated that the use of waste for the production of cement-slag-wood composite showed lower performance when compared to the results obtained in studies without the use of waste. However, some applications are feasible to be performed with the use of composite wood-cement-slag
Resumo:
The biomass gasification systems have been used for a long time and prove to be a good alternative to the generation of energy problems. This type of management requires a simple installation and maintenance which gives them a high availability. In Biomass project via Call CTEnerg 33/2006-1, funded by the Ministry of Science and Technology - MCT - Brazil, the Group Energy Systems Optimization – GOSE - at FEG - UNESP built and tested two prototypes of gasifiers. These is fed with 25 kg / h of dry wood (chips), and 50 Nm3 / h of air to produce gas at a flow rate of approximately 70 Nm3 / h of wood (syngas) at a temperature approximately 600 ° C. In this work of graduation, studies were conducted on the materials used in both the gasifier as well as cleaning the filter synthesis gases. The system of gas cleaning and conditioning is vital to ensure the life of the Internal Combustion Engine. In this case the studies of different filters for small gasification systems (properties, materials used, characteristics, types, etc.) are very relevant to its use in the prototype of the college campus. Were also performed a technical and economic analysis of a cogeneration system that consists in the combination of the downdraft gasifier studied in this work, an internal combustion engine, two heat exchangers and a SRA (absorption system refrigerator). Were calculated the costs of electricity generation, hot water and cold water. Finally, we analyzed the economic feasibility of the project
Resumo:
This study aims to determine the most suitable type of heat exchanger to be applied to the water cooling the mold of a continuous casting process. Basically been studied four types of heat exchangers: shell and tube operating in counterflow, shell and tube operating in parallel flow, plate type and operating counterflow and plates operating in parallel flow. Initially is displayed design of heat exchangers for the conditions of the proposed application. With the heat exchangers dimensioned comparisons were made in order to set the heat exchanger more suitable for application. In the study, one comes to the conclusion that the plate type heat exchangers operating shows counterflow major advantage for this application
Resumo:
This work research and analyses the formulations and concepts of heat and temperature presented in Physics textbooks. These issues are deemed important because students often have difficulties differentiating and understanding such concepts, which compromises their education. The goal is to show that well-established relationships between Physical quantities such as energy, pressure, heat and temperature, even in different theories of Classical and Quantum Physics are not enough to define either temperature or heat. It also presents simple experiments that complement the teaching and learning of these concepts
Resumo:
The present study evaluated the mechanical properties of pieces of wood coming from the roof structure of a residence subject fire in the rural area of Itapeva/SP. The structure was built 25 years ago using wooden beams of the species Guarucaia (Peltophorum vogelianum), where the specimens were removed. The research methodology included qualitative evaluation of the samples, estimating the layer pyrolysis and carbonization of the wood, measuring of density and mechanical tests of compression parallel to grain, tension parallel to grain and shear. The mechanical properties of wood were analytically correlated with the layers carbonization and pyrolysis that are influenced by the temperature and time of fire; these values were estimated at 1000 °C and two hours for the case in question. The results indicate that the strength properties of degraded wood are different from a healthy wood. The level of thermodegradation, in general, can be measured by density, result in weight loss due to decomposition of the wooden components.
Resumo:
This work analyzed the loss of sensible heat from one fluid to be considered homogeneous heat distribution on a thermal reservoir with cylindrical geometries composite insulating layers. We studied two thermal reservoirs with a volume of 20 liters, and the first has a layer thickness of 75 mm of expanding polyurethane foam wrapped in the polycarbonate container and the second container has only layer thickness of 5 mm of polycarbonate, as insulation of fluid of the external environment. The experimental results are compared with theoretical results obtained through a calculation script, displayed and detailed during the work development, from the theory of energy balance. The maximum error introduced between the theoretical and experimental results were 3.5% and 1.4% respectively for the Boilers with or without a polyurethane coating
Resumo:
This work aims to verify and compare the efficiency of heat exchangers used in the thermal systems laboratory at Faculdade de Engenharia do Campus de Guaratinguetá - UNESP. Basically, it has been studied two types of heat exchangers: plate type, operating in parallel flow and counter-flow, shell and tube type and also operating in parallel flow and counter flow. Initially it has been presented the didactic equipment and procedures for use of these heat exchangers in the proposed experiments. With the results obtained from the experiments, comparisons were made in order to define the behavior of the heat exchangers regarding some variables. In the study, one comes to the conclusion that the results from shell and tube type of heat exchanger, used in the thermal systems lab, are superior in all conditions analyzed
Resumo:
The use of heat in parallel with relative low temperatures and applied to several areas of the industry is essential for the main manufacturing processes, like drying, dehydrating, concentration, annealing, production of chemical reactions, and microbiological sterilization. Without neither the heat nor the coming of a great quantity of thermal heat, with high quality, there would not be the “modern society”, with its high standards of living plus its high consumption levels; from services to goods in general. Within an almost absolute way, the heat flows are obtained from vapor systems. Thus, in this work we are going into the operation of a vapor system, composed of two firetube boilers dimensioned to supply vapor for three processes. However, with the transfer of one of the processes to another plant, the system got over-dimensioned. But, taking advantage of this scenario, the two boilers were used to supply vapor to further processes, causing their intermittent usage. Moreover, the operational alternative adopted by the maintenance engineering of the plant for a creating a solution has been presented; both the positive points and negative ones were disclosed, likewise the possibility of improvement points
Resumo:
According to ABIPA (2009), Brazil is currently among the major producers of reconstituted wood panels, with one of the main factors for this condition, its climate and its large land area, which allows the cultivation of forests, which provide raw materials for these industries. To establish that market as power, Brazil has invested about R$ 1.3 billion in the last 10 years, yet designed an investment of 0.8 billion dollars over the next three years (BNDES, 2008). With the new investments in this segment, we expect a growth of about 66% in the resin consumption of urea-formaldehyde (GPC, 2009) which should also result in major investments by the companies producing this polymer. Currently employees are mainly three types of resins in the production industry panels, as follows: Urea-Formaldehyde Resin (R-UF), melamine-formaldehyde resin (R-MF) and Phenol-Formaldehyde Resin (R-FF). Especially the cost factor, the urea-formaldehyde resin is the most used by companies producing reconstituted wood panels. The UF-R is a polymer obtained by condensation of urea and formaldehyde reactors (usually batch type), characterized by being a thermosetting polymer which makes it very efficient for bonding wood composites. The urea-formaldehyde polymer, to present a quite complex, it becomes very difficult to predict the exact chain resulting in the process of condensation of urea with formaldehyde, so that a greater knowledge of its characteristics and methods for their characterization can result in greater control in industrial processes and subsequent decrease cost and improve the quality of reconstituted wood panels produced in Brazil