313 resultados para TiO2 underlayer
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess Pb-210 models have been applied to a Pb-210 data set providing of eighteen sediments profiles sampled at four riverine systems occurring in Brazil, South America: Corumbatai River basin (S1=Site 1, Sao Paulo State), Atibaia River basin (S2=Site 2, Sao Paulo State), Ribeirao dos Bagres basin (S3=Site 3, Sao Paulo State) and Amazon River mouth. (S4=Site 4, Amapa State). These sites were chosen for a comparative evaluation of the performance of the CF:CS and CRS models due to their pronounced differences on the geographical location, geological context, soil composition, biodiversity, climate, rainfall, and water flow regime, among other variable aspects. However, all sediments cores exhibited a common denominator consisting on a database built from the use of the same techniques for acquiring the sediments major chemical composition (SiO2, Al2O3, Na2O, K2O, CaO, MgO, Fe2O3, MnO, P2O5, TiO2 and LOI-Loss on Ignition) and unsupported/excess 210Pb activity data. In terms of sedimentation rates, the performance of the CRS model was better than that of the CF:CS model as it yielded values more compatible with those expected from field evidences. Under the chronological point of view, the CRS model always provided ages within the permitted range of the Pb-210-method in the studied sites, whereas the CF:CS model predicted some values above 150 years. The SiO2 content decreased in accordance with the LOI increase in all cores analyzed and such inverse relationship was also tracked in the SiO2-LOI curves of historical trends. The SiO2-LOI concentration fluctuations in sites S1 and S3 also coincided with some Cu and Cr inputs in the drainage systems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The solar energy is far the largest source of energy available in earth and has attracted for milleniuns, the attention and interest for a rational use. The solar energy which strikes the Earth in one hour is bigger than the whole consume of energy in Earth in one year. Among the forms of transformation of this clean, renewable energy, the electrical conversion, photovoltaic cells, have the materials based on silicon or germanium semiconductors due to its technology and production processes involved still have a high production cost. An alternative to this solar cell is based on a synthetic dye and a semiconductor nanocrystalline TiO2, titanium dioxide, called DSC (Dye-Sensitized Cells), which have a cost of up to 80% lower than silicon cells
Resumo:
O protetor solar é um produto extremamente importante para proteger a pele da radiação ultravioleta proveniente do sol e capaz de reduzir a incidência de câncer de pele. Os filtros solares são divididos em orgânicos e inorgânicos e, dentre os inorgânicos, se encontra o TiO2 que atua refletindo, espalhando e absorvendo as radiações UV, além de ser fotoestável e de baixo potencial de irritabilidade dérmica. Neste trabalho foram desenvolvidas formulações cosméticas em forma de gel contendo nanopartículas de dióxido de titânio capazes de agir como fotoprotetores físicos e que mantem a transparência ao serem aplicados sobre uma superfície, como a pele. Foram desenvolvidos xerogéis a base de nanopartículas de TiO2 com tamanho e superfície controlados. A partir dessas nanopartículas foi possível preparar formulações cosméticas contendo nanopartículas redispersas de xerogéis a base de TiO2. Esses sistemas foram avaliados por testes de citotoxicidade e foi obtido um resultado favorável para a continuidade da pesquisa, sugerindo o uso deste material em humanos sem causar danos. Foram feitas as caracterizações físico químicas e estruturais. A análise de FPS indicou amplo espectro da formulação, o potencial zeta mostrou que é possível evitar aglomerações das nanopartículas em pHs utilizados para formulações tópicas, a reologia demonstrou que as formulações apresentam comportamento de recuperação da consistência e organização do material inicial após seu desarranjo durante o cisalhamento. As caracterizações serviram para obter um conhecimento da estrutura química e física das amostras que contém as nanopartículas de dióxido de titânio, para que seja possível fazer uma análise crítica e melhor qualificar o protetor solar desenvolvido.
Resumo:
Due to complications caused by metallic implants in the replacement of bone tissue, the biological application of ceramics raised and became a viable alternative. The titania has the ability to promote bone tissue regeneration based on its structure, mechanical and biologically properties compatibility. The present work aims at obtaining and characterization of Titania (TiO2) porous ceramics produced by the polymeric sponge method (replica method). Polyurethane sponge with 10 ppi and 15 ppi (pores per linear inch) were used. The process differentiation is the air blower used to remove excess slurry. The ceramics sponges were dried in an oven, then pre-sintered at 1000 o C and sintered at 1450 o C. The effect of direct sintering at 1450 o C was also assessed. The percentage of solids used to prepare the slurry was 40 to 45% by weight. To increase the surface porosity of the sponge, 20% of starch was added. There was difficulty on controlling the thickness of the slurry layers on the sponge which resulted in the variation of samples mechanical resistance. Despite this, the results obtained are quite promising for the proposed use, indicating that it is possible to obtain titania sponges with an apparent porosity of around 60%, a bulk density ranging from 40 to 47% and a compressive strength resistance – that with better control of layers depositions – can vary from 1 to 4 MPa
Resumo:
The paper deals with the petrographic and geochemical investigation of basalt flows present in a gravel quarry in the town of Monções in northwestern São Paulo State, members of the Serra Geral Formation of the Paraná Basin. Were collected 11 samples from different horizons within a topographic vertical profile with an average of 18 meters in height. The samples were subjected to macroscopic and microscopic petrographic and chemical major, minor and trace. The results indicated that it is tholeiitic basalts with dense fine grained average. Petrographic analyzes show that basalts studied are basically constituted by plagioclase (between 33 and 49%), labradorite and clinopyroxenes (between 29 and 46%) represented by the subordinate pigeonite and augite, having as accessories opaque (between 3 and 15% ), olivine (<2%), apatite and zircon as dashes. The secondary minerals correspond to cloropheite, chlorite, serpentine, epidote, albite and iron oxides and hydroxy as well as bowlingit of clay, nontronite, and celadonite. The basalts are kind of high-titanium (Hti)> 1.8% TiO2, and apparently belong to the Pitanga magma-type. The geochemical analyzes proved unsatisfactory for the determination of a probable lithogeochemistry differentiation within the vertical stroke for generating multiple data correlation or no immediately discernible trends
Resumo:
The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.