363 resultados para Pesticides
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.
Resumo:
The fall armyworm Spodoptera frugiperda is one of the most important pests of maize. Various studies are conducted for their management, integrating chemical and biological control tactics as well as resistant plants. In order to offer alternatives for an efficient management of this pest with minimal use of pesticides, the technology of genetically modified plants resistant to insects has been widely studied. The aim of the present study was to evaluate the natural infestation of larvae of S. frugiperda and their injuries under field conditions in transgenic maize hybrids compared to their conventional isogenic counterparts at two sowing dates and two regions. The hybrids were planted in the off season of 2010 in Jaboticabal, SP, Brazil, and the summer of 2010/2011 in Jaboticabal, and Pindorama, SP, in a randomized block with seven treatments (hybrids) and four replications. Different levels of infestation of larvae occurred throughout the phenological development of plants in conventional and genetically modified hybrids with significant differences between the two groups in most evaluations. The hybrid 2B710HX was the least infested with caterpillars and had the least damaged leaf area. It follows that the Cry1F toxin was the most effective in protecting the plant in relation to other toxic proteins expressed by the other Bt hybrids against infestation and damage promoted by this pest, regardless of time of sowing.
Resumo:
Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1) and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1). The method of proboscis extension reflection (PER) and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p < 0.05) although agrochemicals affected the learning of bees. Insecticides fipronil and imidacloprid are extremely harmful to foraging Africanized Apis mellifera bees.
Resumo:
The purpose of this study envisaged the quantification of skin and respiratory exposures occasioned by work conditions during pesticide spraying of citrus fruits using hand gun sprayers; the evaluation of the efficiency of individual and group protection measures for the workers; the determination of workers' most exposed body regions; and the classification of work conditions, with and without the tested work-safety protection measures as recommended for the registered pesticides used to control the main pests and diseases that attack these types of trees and fruits. The AZR protection equipment proved to be the most efficient for the tractor driver, when spraying using pistol sprayers. The two sets of individual protection equipment that were checked also proved to be efficient. The most exposed regions of the tractor driver's body were the thighs, the front of the legs, the feet and hands. The most exposed regions of the individual sprayer working on foot were the hands and feet.
Resumo:
The objectives of this study were: a) to quantify dermal and respiratory exposure resulting from work conditions in the application of pesticides on citrus crops using a air-assisted sprayer and by preparing the spray in a tank with a capacity of2.000 L; b) to evaluate the measures of individual protection for these workers; c) to determine the areas of the worker's body most exposed; and d) to classify the work conditions with and without the protective measures tested, with regard to the occupational safety of the recommendations for the pesticides used in controlling the main pests and diseases of this crop. It was shown that for the tractor driver and sprayer operator applyng pesticides on citrus trees, the most efficient protective measures were the AZR ensemble and the Real cabin. The AZR ensemble was effective in controlling exposure of the spray preparer, because it was sufficient to turn work conditions from unsafe to safe. The area of the body most exposed under the two work conditions studied was the hands of the workers.
Resumo:
Heavy metals and pesticides are usually associated with the main problems humankind has created in the natural environment. However, compounds with characteristics of essential macronutrients are causing serious environmental changes that could intensify, compromising the diversity of life on the planet. This is the case of nitrogen compounds, produced by industrial processes for use in intensive agriculture in addition to those unwittingly produced from human activities, available in excess in the environment. These compounds warrant greater attention from researchers in various fields of knowledge and public agencies for environmental control, toward minimizing their availability in the environment, thereby returning conditions closer to the natural environmental balance of the planet.
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA