348 resultados para Immediate implant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution on the pen-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm x 5 mm) were created varying the platform (R, regular or S. switching) and the abutments (S, straight or A, angulated 15 degrees). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (sigma(max)) and minimum (sigma(min)) principal stress values were obtained. For the cortical bone the highest stress values (sigma(max)) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (sigma(max)) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the release of bone markers during osseointegration of immediately loaded and nonloaded implants. Forty patients who were indicated for rehabilitation with dental implants randomly received either implant and prosthesis placement within 72 hours (group IM) or implant insertion and no prosthesis placement (group NL). Peri-implant crevicular fluid was collected immediately after implant insertion and 7, 15, 30, 60, 90, and 120 days after surgery and levels of osteoprotegerin, transforming growth factors, osteocalcin, osteopontin, and parathyroid hormone were evaluated using Luminex assay. Bleeding index and peri-implantar sulcus depth were also evaluated. The data were compared using statistical tests ( = 5%). No statistical difference was found regarding demographic and clinical parameters (p > .05). Transforming growth factors, osteoprotegerin, osteopontin, and parathyroid hormone presented an earlier release peak in group IM than in NL group (p < .05). Osteocalcin achieved higher levels in group IM versus group NL between 7 and 30 days of evaluation (p < .05). It may be concluded that earlier loading positively modulates bone mediators release around immediately loaded implants when compared with nonloaded dental implants (ClinicalTrials.gov NCT01909999).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the survival probability of four narrow-diameter implant systems when subjected to fatigue loading. Materials and Methods: Seventy-two narrow-diameter implants to be restored with single-unit crowns were divided into four groups (n = 18): Astra Tech (3.5-mm diameter), with a standard connection (ASC); BioHorizon (3.4-mm diameter), with a standard connection (BSC); Intra-Lock (3.4-mm diameter), with a standard multilobular connection (ISC); and Intra-Lock (3.4-diameter), with a modified square connection (IMC). The corresponding abutments were screwed onto the implants, and standardized metal crowns (maxillary central incisors) were cemented and subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for 100,000 cycles at 150 and 200 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used to access the failure modes. Results: The calculated survival probability for 100,000 cycles at 150 N was approximately 93% in group ASC, 98% in group BSC, 94% in group ISC, and 99% in group IMC. At 200 N, the survival rate was estimated to be approximately < 0.1% for ASC, 77% for BSC, 34% for ISC, and 93% for IMC. Abutment screw fracture was the main failure mode for all groups. Conclusions: Although the probability of survival was not significantly different among systems at a load of 150 N, a significant decrease was observed at 200 N for all groups except IMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of polymeric blends to be used as matrices for bone regeneration is a hot topic nowadays. In this article we report on the blends composed by corn starch and poly(vinylidene fluoride), PVDF, or poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), to obtain biocompatible materials. Blends were produced by compressing/annealing and chemically/structurally characterized by micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopies, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM), besides in vivo study to evaluate the tissue response. Vibrational spectroscopy reveals no chemical interaction between the polymers and starch, absence of material degradation due to compressing/annealing process or organism implantation, and maintenance of a and ferroelectric crystalline phases of PVDF and P(VDF-TrFE), respectively. As a consequence of absence of interaction between polymers and starch, it was possible to identify by SEM each material, with starch acting as filler. Elastic modulus (E') obtained from DMA measurement, independent of the material proportion used in blends, reaches values close to those of cancellous bone. Finally, the in vivo study in animals shows that the blends, regardless of the composition, were tolerated by cancellous bone. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:The aim of this study was to evaluate deformation, roughness, and mass loss of stainless steel, diamond-like carbon (DLC)-coated and zirconia drills after multiple osteotomies with sterilization procedures.Materials and Methods:Drilling procedures were performed using stainless steel (G1), DLC-coated (G2), and zirconia (G3) drills. All groups were divided in subgroups 1, 2, 3, 4, and 5, corresponded to drills used 0, 10, 20, 30, and 40 times, respectively.Results:No significant differences in mass and roughness were detected among all groups and subgroups. In SEM images, all groups revealed signs of wear while coating delamination was detected in G2. Drills from G1 displayed more irregular surface, whereas cutting edges were more regular in G3.Conclusion:Zirconia drills presented more regular surfaces whereas stainless steel drills revealed more severe signs of wear. Further studies must be performed to evaluate the putative influence of these findings in heat generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared bone heating, drill deformation, and drill roughness after several implant osteotomies in the guided surgery technique and the classic drilling procedure. Materials and Methods: The tibias of 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG); subgroups were then designated (G0, G1, G2, G3, and G4, corresponding to drills used 0, 10, 20, 30 and 40 times, respectively). Each animal received 10 sequential osteotomies (5 in each tibia) with each technique. Thermal changes were quantified, drill roughness was measured, and the drills were subjected to scanning electron microscopy. Results: Bone temperature generated by drilling was significantly higher in the GG than in the CG. Drill deformation in the GG and CG increased with drill use, and in the CG a significant difference between GO and groups G3 and G4 was observed. In the GG, a significant difference between GO and all other groups was found. For GG versus CG, a significant difference was found in the 40th osteotomy. Drill roughness in both groups was progressive in accordance with increased use, but there was no statistically significant difference between subgroups or between GG and CG overall. Conclusion: During preparation of implant osteotomies, the guided surgery technique generated a higher bone temperature and deformed drills more than the classic drilling procedure. The increase in tissue temperature was directly proportional to the number of times drills were used, but neither technique generated critical necrosis-inducing temperatures. Drill deformation was directly proportional to the number of times the drills were used. The roughness of the drills was directly proportional to the number of reuses in both groups but tended to be higher in the GG group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution with different implant systems through photoelasticity. Five models were fabricated with photoelastic resin PL-2. Each model was composed of a block of photoelastic resin (10 x 40 x 45 mm) with an implant and a healing abutment: model 1, internal hexagon implant (4.0 X 10 mm; Conect AR, Conexao, Sao Paulo, Brazil); model 2, Morse taper/internal octagon implant (4.1 x 10 mm; Standard, Straumann ITI, Andover, Mass); model 3, Morse taper implant (4.0 x 10 mm; AR Morse, Conexao); model 4, locking taper implant (4.0 x 11 mm; Bicon, Boston, Mass); model 5, external hexagon implant (4.0 x 10 mm; Master Screw, Conexao). Axial and oblique load (45) of 150 N were applied by a universal testing machine (EMIC-DL 3000), and a circular polariscope was used to visualize the stress. The results were photographed and analyzed qualitatively using Adobe Photoshop software. For the axial load, the greatest stress concentration was exhibited in the cervical and apical thirds. However, the highest number of isochromatic fringes was observed in the implant apex and in the cervical adjacent to the load direction in all models for the oblique load. Model 2 (Morse taper, internal octagon, Straumann ITI) presented the lowest stress concentration, while model 5 (external hexagon, Master Screw, Conexao) exhibited the greatest stress. It was concluded that Morse taper implants presented a more favorable stress distribution among the test groups. The external hexagon implant showed the highest stress concentration. Oblique load generated the highest stress in all models analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the role of the implant/abutment system on torque maintenance of titanium retention screws and the vertical misfit of screw-retained implant-supported crowns before and after mechanical cycling. Materials and Methods: Three groups were studied: morse taper implants with conical abutments (MTC group), external-hexagon implants with conical abutments (EHC group), and external-hexagon implants with UCLA abutments (EHU group). Metallic crowns casted in cobalt-chromium alloy were used (n = 10). Retention screws received insertion torque and, after 3 minutes, initial detorque was measured. Crowns were retightened and submitted to cyclic loading testing under oblique loading (30 degrees) of 130 +/- 10 N at 2 Hz of frequency, totaling 1 x 10(6) cycles. After cycling, final detorque was measured. Vertical misfit was measured using a stereomicroscope. Data were analyzed by analysis of variance, Tukey test, and Pearson correlation test (P < .05). Results: All detorque values were lower than the insertion torque both before and after mechanical cycling. No statistically significant difference was observed among groups before mechanical cycling. After mechanical cycling, a statistically significantly lower loss of detorque was verified in the MTC group in comparison to the EHC group. Significantly lower vertical misfit values were noted after mechanical cycling but there was no difference among groups. There was no significant correlation between detorque values and vertical misfit. Conclusions: All groups presented a significant decrease of torque before and after mechanical cycling. The morse taper connection promoted the highest torque maintenance. Mechanical cycling reduced the vertical misfit of all groups, although no significant correlation between vertical misfit and torque loss was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the reliability of implant-supported single crowns cemented onto abutments retained with coated (C) or noncoated (NC) screws and onto platform-switched abutments with coated screws. Materials and Methods: Fifty-four implants (DT Implant 4-mm Standard Platform, Intra-Lock International) were divided into three groups (n = 18 each) as follows: matching-platform abutments secured with noncoated abutment screws (MNC); matching-platform abutments tightened with coated abutment screws (MC); and switched-platform abutments secured with coated abutment screws (SC). Screws were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy (XPS). The specimens were subjected to step-stress accelerated life testing. Use-level probability Weibull curves and reliability for 100,000 cycles at 200 N and 300 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used for fractographic analysis. Results: Scanning electron microscopy revealed differences in surface texture; noncoated screws presented the typical machining grooves texture, whereas coated screws presented a plastically deformed surface layer. XPS revealed the same base components for both screws, with the exception of higher degrees of silicon in the SiO2 form for the coated samples. For 100,000 cycles at 300 N, reliability values were 0.06 (0.01 to 0.16), 0.25 (0.09 to 0.45), and 0.25 (0.08 to 0.45), for MNC, MC, and SC, respectively. The most common failure mechanism for MNC was fracture of the abutment screw, followed by bending, or its fracture, along with fracture of the abutment or implant. Coated abutment screws most commonly fractured along with the abutment, irrespective of abutment type. Conclusion: Reliability was higher for both groups with the coated screw than with the uncoated screw. Failure modes differed between coated and uncoated groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)