295 resultados para Hymenoptera venom
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The fat body cells of virgin females and queens of Pachycondyla striata ants belonging to the subfamily Ponerinae are illustrated from morphologic, ultramorphologic and morphometric viewpoints. Camera lucida drawing techniques were used, as well as scanning electronic microscopy (SEM). Measurements of trophocytes and oenocytes areas in the tissue were recorded. The results showed that in P. striata queens and virgin females the trophocytes are arranged in cord-like formations in association with oenocytes. Trophocytes of both castes had round shapes, with rather vacuolized cytoplasm, whereas oenocytes, being smaller than trophocytes, had more homogeneous cytoplasm. It was also observed that both trophocytes and oenocytes of virgin females were larger than those found in the same queen cellular types.
Resumo:
The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Caste determination in Trigona spinipes Fabricius (Hymenoptera, Apidae, Meliponini) is trophogenic. Larvae that eat about 360 mu l of food become queens, while those who consume 36 mu l develop into workers. We studied the effect of larval nutrition on the number and length of ovarioles and on ovarian development in fifth instar larvae, white eyed, pink eyed and black-eyed pupae as well as newly emerged adults. All larvae have four ovarioles per ovary, while in queen pupae this number ranged from 8 to 15. Cyst formation, the cell death and other characteristics of ovary morphogenesis were the same regardless of the quantity of food consumed. These results are discussed in relation to caste differentiation in other bees.
Resumo:
As compared to Apis mellifera where only workers have hypopharyngeal glands, in Scaptotrigona postica, these glands occur in workers, queens and males. They are composed of two long axial ducts with many unicellular secretory alveoli interconnected by secretory canaliculi. The axial ducts are longer in miles than in workers, but the alveolar areas of queens and males are generally smaller. In workers the alveoli have their greatest size in the nurses or middle-aged individuals while in queens and males they are larger in newly emerged individuals. The results indicate that the glands in workers may produce food for the brood as in A. mellifera, since they are well developed in the nurse workers. However, the function of the glands in queens and males remains to be clarified since these individuals have no part in brood care.
Resumo:
The mandibular gland in Melipona bicolor workers and queens was studied by scanning and transmission electron microscopy. There is no difference in the gland anatomy between the castes, but the transmission electron microscopy showed variation of the cellular ultrastructure according to the secretory phase of the gland in both castes. Smooth endoplasmic reticulum was abundant in the secretory cells of physogastric queens, indicating that these cells produce lipid secretion that is stored in granules with multi-lamellar bodies. Mitochondrial variations during the cell secretory cycle indicates their participation in the lipid synthesis. After secretion, release in the reservoir lumen through the collecting canals, the secretory cells contain many myelinic bodies, indicative of cellular regression. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Inflammatory peptides display different types of post-transcriptional modifications, such as C-terminal amidation, that alter their biological activity. Here we describe the structural and molecular dynamics features of the mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF-NH2), found in the venom of the solitary wasp, and of its carboxyl-free C-terminal form (EMP-AF-COO-) characterized by a reduced activity. Circular dichroism indicates that both peptides switch from a random coil conformation in water to a helical structure in TFE and SDS micelles. NMR data, in 30% TFE, reveal that the two peptides fold into an alpha-helix spanning most of their length, while they differ in terms of molecular rigidity. To understand the origins of the conformational flexibility observed in the case of EMP-AF-COO-, a 5 ns MD simulation was carried out for each peptide, in an explicit water/TFE environment. The results show that the two peptides differ in an H-bond between Leu14 NH2 and the backbone carbonyl of Ile11. The loss of that H-bond in EMP-AF-COO- leads to a significant modification of its structural dynamics. In fact, as evidenced by essential dynamics analysis, while EMP-AF-NH2 exists mainly as a rigid structure, EMP-AF-COO- presents two helical stretches that fluctuate in some sort of independent fashion. We conclude that the diverse biological activity of the two peptides is not simply due to the reduction of the net positive charge, as generally suggested, but also to a structural perturbation of the amphipathic alpha-helix that affects their ability to perturb the cell membrane.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The wasps of the genus Polistes have been considered the key to understanding the evolution of social behavior in Hymenoptera. Several studies have shown that the development of organized insect societies was accompanied by the evolution of structures like exocrine glands, which became specialized to perform specific functions. This article investigates the ultrastructural and cytochemical features of the hypopharyngeal glands of Polistes versicolor. These glands have been studied in depth in social bees, where they occur only in nurses and produce the royal jelly. Our results revealed that these glands basically did not vary among individuals or between sexes. They are constituted by spherical cells, each with a large nucleus and well-developed rough endoplasmic reticulum. Secretion vesicles are abundant, but lipid droplets were not observed, indicating that these glands may not have a role in pheromone synthesis. Acid phosphatase was detected in lysosomes, and also free in the cytosol, but did not seem to be related with cell death. Thus, our results suggest that the hypopharyngeal glands of P. versicolor may not have a specialized social role, but could produce digestive enzymes.