435 resultados para Distribuição espacial da população


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Zoologia) - IBB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to analyze the spatial distribution of dengue risk and its association with socio-environmental conditions. This was an ecological study of the counts of autochthonous dengue cases in the municipality of Campinas, São Paulo State, Brazil, in the year 2007, aggregated according to 47 coverage areas of municipal health centers. Spatial models for mapping diseases were constructed with Bayesian hierarchical models, based on Integrated Nested Laplace Approximation (INLA). The analyses were stratified according to two age groups, 0 to 14 years and above 14 years. The results indicate that the spatial distribution of dengue risk is not associated with socio-environmental conditions in the 0 to 14 year age group. In the age group older than 14 years, the relative risk of dengue increases significantly as the level of socio-environmental deprivation increases. Mapping of socio-environmental deprivation and dengue cases proved to be a useful tool for data analysis in dengue surveillance systems.