290 resultados para Antimicrobial enzymes
Resumo:
Background: The management of aggressive periodontitis (AgP) represents a challenge for clinicians because there are no standardized protocols for an efficient control of the disease. This randomized controlled clinical trial evaluated the effects of repeated applications of antimicrobial photodynamic therapy (aPDT) adjunctive to scaling and root planing (SRP) in patients with AgP. Methods: Using a split-mouth design, 20 patients with generalized AgP were treated with aPDT + SRP (test group) or SRP only (control group). aPDT was applied at four periods. All patients were monitored for 90 days. Clinical, microbiologic, and immunologic parameters were statistically analyzed. Results: In deep periodontal pocket analysis (probing depth [PD] >= 7 mm at baseline), the test group presented a decrease in PD and a clinical attachment gain significantly higher than the control group at 90 days (P < 0.05). The test group also demonstrated significantly less periodontal pathogens of red and orange complexes and a lower interleukin-1 beta/interleukin-10 ratio than the control group (P < 0.05). Conclusion: The application of four sessions of aPDT, adjunctive to SRP, promotes additional clinical, microbiologic, and immunologic benefits in the treatment of deep periodontal pockets in single-rooted teeth in patients with AgP.
Resumo:
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as 'moonlighting'proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitratelyase, malatesynthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Resumo:
Pyometra is recognized as one of the main causes of disease and death in the bitch, and Escherichia coli is the major pathogen associated with this disease. In this study, 70 E. coli isolates from the uteri horn, mouth, and rectum of bitches suffering from the disease and 43 E. coli isolates from the rectum of clinically healthy bitches were examined for the presence of uropathogenic virulence genes and susceptibility to antimicrobial drugs. DNA profiles of isolates from uteri horn and mouth in bitches with pyometra were compared by REP, ERIC, and BOX-PCR. Virulence gene frequencies detected in isolates from canine pyometra were as follows: 95.7% fim, 27.1% iss, 25.7% hly, 18.5% iuc, and 17.1% usp. Predominant resistance was determined for cephalothin, ampicillin, and nalidixic acid among the isolates from all sites examined. Multidrug resistance was found on ∼ 50% pyometra isolates. Using the genotypic methods some isolates from uteri, pus, and saliva of the same bitch proved to have identical DNA profiles which is a reason for concern due to the close relationship between household pets and humans.
Resumo:
The characteristics of tissue conditioners support microorganism development that can threaten the health of the dentures user. The object of this study was to evaluate the effect on antimicrobial activity, roughness and wettability surface of a tissue conditioners material combined with the antimicrobial polymer poly (2-tert-butilaminoethyl) methacrylate (PTBAEMA). Specimens of tissue conditioner (Coe Soft(®)) were divided into three groups, according to the concentration of PTBAEMA incorporated (0, 10 and 25%). Antimicrobial activity was assessed by adherence assay of one of the microorganisms, Staphylococcus aureus, Streptococcus mutans and Candida albicans. Roughness measurements were made using a Mitutoyo SJ-400, and the mean arithmetic roughness values (Ra) obtained were used for the comparisons. The wettability properties were determined by contact angle measurements. The group containing 25% of PTBAEMA inhibited totally the S. aureus and S. mutans biofilm formation. A significant reduc tion in the S. aureus (Kruskal-Wallis, p = 0,001) and S. mutans (Kruscal-Wallis, p = 0,001) count for 10% PTBAEMA group compared with respective control group. No significant difference was found for C. albicans among PTBAEMA groups and control group (ANOVA, p > 0,05). Incorporating 10 and 25% PTBAEMA increased surface roughness and decreased contact angles (ANOVA and Tukey's post hoc tests, α = 5%). Incorporating 10% PTBAEMA into tissue conditioner increases wettability and roughness of tissue conditioner surface; and decreases the adhesion of S. mutans and S. aureus on material surface, but did not exhibit antimicrobial effect against C. albicans. The PTBAEMA incorporated into tissue conditioner could prevent biofilm formation on elderly patient.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A mutant that exhibited increased melanin pigment production was isolated from Aspergillus nidulans fungus. This pigment has aroused biotechnological interest due to its photoprotector and antioxidant properties. In a recent study, we showed that melanin from A. nidulans also inhibits NO and TNF-α production. The present study evaluates the mutagenicity and cytotoxicity of melanin extracted from A. nidulans after its exposure to liver S9 enzymes. The cytotoxicity of multiple concentrations of melanin (31.2-500 μg/mL) against the McCoy cell line was evaluated using the Neutral Red assay, after incubation for 24 h. Mutagenicity was assessed using the Ames test with the Salmonella typhimurium strains TA98, TA97a, TA100, and TA102 at concentrations ranging from 125 μg/plate to 1 mg/plate after incubation for 48 h. The cytotoxicity of A. nidulans melanin after incubation with S9 enzymes was less than (CI50 value= 413.4 ± 3.1 μg/mL) that of other toxins, such as cyclophosphamide (CI50 value = 15 ± 1.2 μg/mL), suggesting that even the metabolised pigment does not cause significant damage to cellular components at concentrations up to 100 μg/mL. In addition, melanin did not exhibit mutagenic properties against the TA 97a, TA 98, TA 100, or TA 102 strains of S. typhimurium, as shown by a mutagenic index (MI) <2 in all assays. The significance of these results supports the use of melanin as a therapeutic reagent because it possesses low cytotoxicity and mutagenic potential, even when processed through an external metabolising system.
Resumo:
Periodontal disease is the result of the interrelationship between microbiotic aggression and the host’s organic defence. Amongst the microorganisms involved in periodontopathies, Fusobacterium nucleatum is conspicuous by establishing a link between the initial and final colonizers, besides producing toxic compounds and adhering to the host’s cells. Control of bacterial biofilm can be achieved by use of chemical agents, many of which extracted from plants. Thus the object of this study was to evaluate the inhibitory activity in vitro of some teas, generally taken in a normal diet, on Fusobacterium nucleatum and your adherence to host’s cells. Minimum inhibitory and bactericidal concentrations were established and haemagglutinative test in microplaques was effected. It was ascertained that all plant extracts have inhibitory activity and that infusions of Camellia sinensis (black tea and green tea), Mentha piperita (mint) and Pimpinella anixem (aniseed) added to the bacteria/erythrocyte compound reduced significantly the adherence of microorganisms.
Resumo:
The objective of this study was to evaluate the microbial susceptibility to ß-lactams and metronidazole, and evaluate the production of ß-lactamases by microorganisms isolated from patients with chronic or aggressive periodontitis. The samples were obtained from 50 patients with periodontitis and microorganisms were isolated onto selective and nonselective culture media, identified by biochemical methods and tested for susceptibility to antimicrobial agents (amoxicillin, amoxicillin/clavulanate, cefoxitin, imipenem, metronidazole, penicillin G). The isolates were resistant to at least 1 mg/ml of any drug tested were evaluated to verify the production of ß-lactamases by the method of double layer (or biological) and chromogenic cephalosporin using nitrocefin. The results evidenced resistance to amoxicillin and penicillin G, while the susceptibility to association amoxicillin/clavulanate, imipenem and cefoxitin was widely disseminated among the organisms. Resistance to these drugs showed a clear correlation with the production of ß-lactamase in the majority of microbial groups.
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background The aim of this study was to compare antimicrobial photodynamic therapy (aPDT) as an adjunctive treatment to scaling and root planing (SRP) for induced periodontitis in nicotine-modified rats. Material & Methods A total of 240 rats were evenly divided into two groups: C – saline solution treatment; N – nicotine treatment. Periodontal disease was induced in both groups at the first mandibular molar. After 7 days, the ligature was removed. All animals were submitted to SRP and were divided according to the following treatments: SRP – irrigation with saline solution; Toluidine Blue-O (TBO) – irrigation with phenothiazinium dye (100 μg/ml); LLLT – laser irradiation (660 nm; 0.03 W; 4 J); and aPDT – TBO and laser irradiation. Ten animals in each group/treatment were euthanized at 7, 15 and 30 days. The histometric and immunohistochemical values were statistically analysed. Results Intragroup analysis demonstrated that in both groups the aPDT treatment resulted in lower bone loss (BL) when compared to SRP in all experimental periods. Intergroup analysis demonstrated that aPDT treatment resulted in lower BL in Group N than in Group C treated with SRP in all experimental periods. Conclusion Antimicrobial photodynamic therapy was an effective adjunctive treatment to SRP for induced periodontitis in nicotine-modified rats.
Resumo:
The aim of this study was to investigate the rheological properties and antibacterial efficacy of chitosan/ alpha-hydroxy acids (lactic acid and glycolic acid) and cellulose polymers, both in hydrogels, in order to produce a formulation with improved activity against Propionibacterium acnes and Staphylococcus aureus, which can potentially be used in the treatment of acne. The rheological characterisation of the hydrogels was examined using continuous shear and viscoelastic creep. The antibacterial activities of formulations were performed by the well diffusion and broth microdilution. The hydrogels formulated with only chitosan showed pseudoplastic behavior while the chitosan hydrogels with cellulose polymers presented viscoelastic properties. The antibacterial activity was proportional to AHA and chitosan concentration. It was enhanced at low pH values and with high molecular weight chitosan and did not change with the incorporation of two cellulose polymers. The antibacterial mechanism of chitosan has currently been hypothesized as being related to surface interference. The results show that chitosan - based hydrogels containing AHA and cellulose polymers are viscoelastic,indicating good applicability onto the skin, and they present bacterial activity under various experimental conditions.
Resumo:
The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.