349 resultados para Acrylic resins
Resumo:
The aim of this study was to evaluate the shear bond strength of brackets bonded with different restorative systems and compare it with that afforded by an established orthodontic bonding system. Seventy human bicuspids were used, divided into five different groups with 14 teeth each. Whereas a specific orthodontic bonding resin (Transbond (TM) XT) was used in the control group, the restorative systems Charisma, Tetric Ceram, TPH Spectrum and Z100 were used in the other four groups. Seven days after bonding the brackets to the samples, shear forces were applied under pressure in a universal testing machine. The data collected was evaluated using the ANOVA test and, when a difference was identified, the Tukey test was applied. A 5% level of significance was adopted. The mean results of the shear bond strength tests were as follows: Group 1 (Charisma), 14.98 MPa; Group 2 (Tetric Ceram), 15.16 MPa; Group 3 (TPH), 17.70 MPa; Group 4 (Z100), 13.91 MPa; and Group 5 or control group (Transbond (TM) XT), 17.15 MPa. No statistically significant difference was found among the groups. It was concluded that all tested resins have sufficient bond strength to be recommended for bonding orthodontic brackets.
Resumo:
The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.
Resumo:
This in vitro research verified the possibility of eliminating staining caused by coffee and red wine in five composite resins, after being submitted to thermal cycling. Thirty-six specimens were prepared and immersed in water at 37 degrees C for 24 hours. After polishing, specimen color was measured in a spectrophotometer Cintra 10 UV (Visible Spectrometer, GBC, Braeside, VIC, Australia). All specimens were submitted to thermal cycling at temperatures of 5 and 55 degrees C with a dwell time of 1 minute, for 1,000 cycles in a 75% ethanol/water solution. After thermal cycling, the specimens were immersed in water at 37 degrees C until 7 days had elapsed from the time the specimens were prepared. All specimens were then taken to the spectrophotometer for color measurement. The specimens were divided into three groups (N = 12): distilled water (control), coffee, and red wine. For the staining process to occur on only one surface, all the sides, except one, of the surfaces were isolated with white wax. The specimens were immersed in one of the solutions at 37 degrees C for 14 days. The specimens were dried and taken to the spectrophotometer for color measurement. After this, the specimens were submitted to 20 mu m wear three times, and the color was measured after each one of the wear procedures. Calculation of the color difference was made using CIEDE2000 formula. According to the methodology used in this research, it was concluded that the staining caused by coffee and red wine was superficial and one wear of 20 mu m was sufficient to remove the discoloration.
Resumo:
The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength.
Resumo:
The purpose of the study was to evaluate the biocompatibility of two current adhesive resins and a calcium hydroxide cement. Fifty-four polyethylene tubes were filled with these dental materials, which were hand-mixed or light-cured according to the manufacturer's directions: group 1-Clearfill Liner Bond 2 (Kuraray); group 2-Single Bond (3M); and group 3-calcium hydroxide cement (Dycal-Dentsply). The materials were implanted into dorsal connective tissue of rats, which were killed 7, 30, and 60 days after the implantation procedure. The implant sites were excised, immersed in buffered Karnovsky's fixative, and processed using routine histological techniques. Sections of 6 μm thickness were stained with hematoxylin and eosin and assessed under light microscopy. Both adhesive resins at 7 days elicited a moderate/intense inflammatory reaction that decreased over time. Fibrous capsules surrounding the tubes were observed at 30 days. Half of the samples in groups 1 and 2 showed thin fibrous capsule formation containing macrophages, capillaries, lymphocytes, fibroblasts, and collagen fibers. Connective tissue healing was observed even though many specimens exhibited a persistent inflammatory reaction mediated by macrophages and giant cells at the 60-day evaluation. Dycal allowed complete healing at 30 days with only a thin fibrous capsule. In conclusion, all experimental materials were successfully walled off by the connective tissue of the rat. However the adhesive resins may release particulates that may, in turn, induce a persistent local inflammatory reaction. Consequently, in this specific condition, these materials cannot be regarded as biocompatible. Dycal was less irritating than the adhesive resins and was better tolerated by the connective tissue. Copyright © 2000 by The American Association of Endodontists.
Resumo:
Objective: The goal of the present study was to evaluate the microleakage on the cementum/dentin and enamel surfaces in Class II restorations, using different kinds of resin composite (microhybrid, flowable, and compactable). Method and materials: Forty human caries-free molars were extracted and selected. Eighty Class II standardized cavities were made in the cervical wall at the cementoenamel junction (CEJ) and at the mesial and distal surfaces. The teeth were divided into four groups: G1 - adhesive system + microhybrid resin composite Z100; G2 - adhesive system + compactable resin composite Prodigy Condensable; G3 - adhesive system + flowable resin composite Revolution + Z100 resin composite; G4 - adhesive system + Revolution fluid resin + compactable resin composite Prodigy Condensable. The adhesive system used in this study was Scotchbond Multi-Purpose Plus. The specimens were thermocycled in baths of 5°C and 55°C for 1,000 cycles and immersed in 50% silver nitrate solution. The specimens then were sectioned and evaluated on degree of dye penetration. Results: The results were evaluated using the nonparametric Kruskall-Wallis test, which showed a statistically significant difference between groups G1 and G4, G2 and G4, and G3 and G4. Conclusions: None of the materials was able to eliminate the marginal microleakage at the cervical wall; the application of a low-viscosity resin composite combined with a compactable resin composite significantly decreased the microleakage.
Resumo:
Modern restorative dentistry has been playing an outstanding role lately since composite resins, allied to adhesive systems, have been widely applied on anterior and posterior teeth restorations. The evolution of composite resins has mostly been verified due to the improvement of their aesthetic behavior and the increase in their compressive and abrasive strengths. In spite of these developments, the polymerization shrinkage inherent to the material has been a major deficiency that, so far, has been impossible to avoid. Using a gas pycnometry, this research investigated the polymerization shrinkage of three packable composite resins: Filtek P60 (3M), Prodigy Condensable (Kerr), and SureFil (Dentsply/Caulk), varying the distance from the light source to the surface of the resins (2 mm or 10 mm). The pycnometer Accupyc 1330 (Micromeritics, USA) precisely records helium displacement, allowing fast and reliable measurements of the volume of composite resin immediately before and after polymerization, without interference of temperature or humidity. Results were not found to be statistically different for the three tested resins, either for 2 mm or 10 mm-distance from the light source to the composite surface.
Resumo:
The objective of this in vitro study was to quantitatively assess the effects of bleaching with 10 and 15% carbamide peroxide (CP) on restoration materials by performing superficial microhardness analysis. Acrylic cylindrical containers (4 x 2 mm) were filled with the following restoration products: Charisma (Heraues Kulzer, Vila Santa Catarina, São Paulo, Brazil), Durafill VS (Heraeus Kulzer), Vitremer (3M, Sumaré, São Paulo, Brazil), Dyract (Dentsply, Petrópolis, Rio de Janeiro, Brazil), and Permite C (SDI, São Pauio, São Paulo, Brazil). Sixty samples were prepared of each restoration material. Twenty samples received bleaching treatment with 10% CP, 20 samples received bleaching treatment with 15% CP, and 20 samples were kept submerged in artificial saliva, which was replaced daily. The treatment consisted of immersion of the specimens in 1 cm3 of CP at 10 and 15% for 6 hours per day during 3 weeks, whereupon the test specimens were washed, dried, and kept immersed in artificial saliva for 18 hours. Then the test and control specimens were analyzed using a microhardness gauge. The Knoop Hardness Number (KHN) was taken for each test and control specimen at five different locations by applying a 25 g force for 20 seconds. The values obtained were transformed into KHNs and the mean was calculated. The data were submitted to statistical analysis by analysis of variance and Tukey test, p < .05. The means/standard deviations were as follows: Charisma: CP 10% 38.52/4.08, CP 15% 34.31/6.13, saliva 37.36/4.48; Durafill VS: CP 10% 18.65/1.65, CP 15% 19.38/2.23, saliva 18.27/1.43; Dyract AP: CP 10% 30.26/2.81, CP 15% 28.64/5.44, saliva 33.88/3.46; Vitremer: CP 10% 28.15/3.04, CP 15% 17.40/3.11, saliva 40.93/4.18; and Permite C: CP 10% 183.50/27.09, CP 15% 159.45/5.78, saliva 215.80/26.15. A decrease in microhardness was observed for the materials Dyract AP, Vitremer, and Permite C after treatment with CP at 10 and 15%, whereas no effect on either of the two composites (Charisma and Durafill) was verified. CLINICAL SIGNIFICANCE: The application of the carbamide peroxide gels at 10 and 15% did not alter the microhardness of the composite resins Charisma and Durafill. In situ and clinical studies are necessary to enable one to conclude that the reduction in microhardness of the materials effectively results in clinical harm to the restorations.
Resumo:
The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.
Resumo:
Purpose: The aim of this study was to evaluate the surface roughness of four packable composite resins, SureFil™ (Dentsply, Petrópolis, Rio de Janeiro, Brazil), Prodigy Condensable™ (Kerr Co., Orange, CA, USA), Filtek P60™ (3M do Brasil, São Paulo, Brazil), and ALERT® (Jeneric/Pentron, Inc., Wallingford, CT, USA) and one microhybrid composite resin (Filtek Z250™, 3M do Brasil) after polishing with four finishing systems. Materials and Methods: Twenty specimens were made of each material (5 mm in diameter and 4 mm high) and were analyzed with a profilometer (Perthometer® S8P, Perthen, Mahr, Germany) to measure the mean surface roughness (Ra). The specimens were then divided into four groups according to the polishing system: group 1 - Sof-Lex™ (3M do Brasil), group 2 - Enhance™ (Dentsply), group 3 - Composite Finishing Kit (KG Sorensen, Barueri, São Paulo, Brazil), and group 4 - Jiffy Polisher Cups® (Ultradent Products, Inc., South Jordan, UT, USA). The specimens were polished and then evaluated for Ra, and the data were subjected to analysis of variance, analysis of covariance, and Tukey's test (p = .05). Results: The mean Ra of SureFil polished with Sof-Lex was significantly lower than that of KG points. Prodigy Condensable polished with Enhance showed a significantly less rough surface than when polished with Sof-Lex. Filtek P60 did not exhibit a significant difference with the various polishing systems. For ALERT the lowest mean Ra was obtained with Sof-Lex and the highest mean Ra with KG points. Regarding Filtek Z250, polishing with KG and Jiffy points resulted in a significantly lower mean Ra than when polished with Enhance. Conclusions: Packable composite resins display variable roughness depending on the polishing system used; the Sof-Lex disks and Jiffy points resulted in the best Ra values for the majority of the materials tested.
Resumo:
Introduction: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. Purpose: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3) of composite resin Filtek Z-250 (3M ESPE) after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante) and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE). Methods: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. Results: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. Conclusion: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.
Resumo:
The effect of post-polymerization treatments (MW-microwave irradiatron and WB-water-bath) on the degree of conversion (DC) of three reline resins (Ufi Gel hard-U, Kooliner-K, and Tokuso Rebase Fast-T) and one denture base resin (Lucitone 550-L), submitted to two polymerization cycles (LS-short and LL-long), was evaluated by using FT-Raman spectroscopy (n = 5). The molecular weight (Mw) of the powder of all materials and of K polymerized specimens (control; MW; and WB; n = 3) was analyzed using GPC. DC data were analyzed using Kruskal-Wallis test (α = .05). For control specimens, there were no significant differences between U (68%) and LL (77%) and among LL, K (81%), and T (84%). LS (92%) had the highest DC (P<0.05). Only material K exhibited an increased DC after WB (P<0.05). All powders had Mw from 4.0 × 105 to 6.5 × 105 and narrow Mw distributions (2.1 to 3.6). Polymerization and post-polymerization produced K specimens with Mw similar to that of K powder.