263 resultados para Soil water. eng


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A aplicação do lodo de estação de tratamento de água (LETA) em solos degradados é uma alternativa tanto para disposição desse resíduo como para a recuperação do solo. Neste trabalho avaliaram-se os efeitos do LETA nos teores de metais pesados em um Latossolo degradado por mineração de cassiterita na Floresta Nacional do Jamari, RO, Brasil. Utilizou-se delineamento experimental inteiramente casualizado com cinco tratamentos: testemunha (n = 4); testemunha química, que recebeu apenas calagem (n = 4) e doses D100, D150 e D200 (respectivamente 100, 150 e 200 mg de N kg-1 solo na forma de LETA), aplicadas antes da calagem (n = 20). Após 30 dias da calagem, período em que o solo contido nos vasos foi mantido com teor de umidade próximo à capacidade de retenção, coletaram-se amostras de solo, que foram analisadas com relação aos teores totais e extraíveis de Fe, Cu, Mn, Zn, Cd, Pb, Ni e Cr. A aplicação de LETA aumentou os teores dos metais pesados do solo. A aplicação deste tipo de lodo em áreas degradadas pode causar impacto ambiental e, portanto, deve ser monitorada.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work the copper(II) complexation parameters of aquatic organic matter, aquatic and soil humic substances from Brazilian were determined using a new versatile approach based on a single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods. The results regarding the copper(II) complexation capacity and conditional stability constants obtained for humic materials were compared with those obtained using direct potentiometry with a copper-ion-selective electrode. The analytical procedure based on ultrafiltration is a good alternative to determine the complexation parameters in natural organic material from aquatic and soil systems. This approach presents additional advantages such as better sensibility, applicability for multi-element capability, and its possible to be used under natural conditions when compared with the traditional ion-selective electrode.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

It is presented two study cases about the approach in root analysis at field and laboratory conditions based on digital image analysis. Grapevine (Vitis vinifera L.) and date palm (Phoenix dactylifera L.) root systems were analyzed by both the monolith and trench wall method aided by digital image analysis. Correlation between root parameters and their fractional distribution over the soil profile were obtained, as well as the root diameter estimation. Results have shown the feasibility of digital image analysis for evaluation of root distribution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objective of this work was to evaluate rates for applications of water treatment sludge (WTS) as a nutrient source for grasses and leguminous plants cropped in a soil degraded by tin mining in the Amazon Region (Natural Forest of Jamari, Rondonia State, Brazil). The treatments consisted of three rates of nitrogen supplied by WTS (100, 150 and 200 mg kg -1 soil), five combinations of plants, two controls (absolute control, without fertilization; and chemical control, soil+lime+chemical fertilizers). WTS modified the contents of macro and micronutrients in the degraded soil, but it was not, as used in the present study, sufficient for the rehabilitation of the degraded area. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.