324 resultados para Restauração conservadora
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Pós-graduação em Serviço Social - FCHS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To compare the abrasion wear resistance and superficial roughness of different glass ionomer cements used as restorative materials, focusing on a new nanoparticulate material. Material and Method: Three glass ionomer cements were evaluated: Ketac Molar, Ketac N100 and Vitremer (3M ESPE, St. Paul, MN, USA), as well as the Filtek Z350 (3M ESPE, St. Paul, MN, USA). For each material were fabricated circular specimens (n=12), respecting the handling mode specified by the manufacturer, which were polished with sandpaper disks of decreasing grit. The wear was determined by the amount of mass (M) lost after brushing (10,000 cycles) and the roughness (Ra) using a surface roughness tester. The difference between the Minitial and Mfinal (ΔM) as well as beroughness of aesthetic restorative materials: an in vitro comparison. SADJ. 2001; 56(7): 316-20. 11. Yip HK, Peng D, Smales RJ. Effects of APF gel on the physical structure of compomers and glass ionomer cements. Oper. Dent. 2001; 26(3): 231-8. 12. Ma T, Johnson GH, Gordon GE. Effects of chemical disinfectants on the surface characteristics and color of denture resins. J Prosthet Dent 1997; 77(2): 197-204. 13. International organization for standardization. Technical specification 14569-1. Dental Materials – guidance on testing of wear resistance – PART I: wear by tooth brushing. Switzerland: ISO; 1999. 14. Bollen CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater.1997; 13(4): 258-9. 15. Kielbassa AM, Gillmann C, Zantner H, Meyer-Lueckel H, Hellwig E, Schulte-Mönting J. Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res. 2005; 39(5): 380-6. 16. Tanoue N, Matsumara H, Atsuta M. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthet Dent. 2000; 84(1): 93-7. 17. Heath JR, Wilson HJ. Abrasion of restorative materials by toothpaste. J Oral Rehabil. 1976; 3(2): 121-38. 18. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparasion of wearresistance of class V restorative materials. J Esthet Dent. 1998; 10(6): 309-14. 19. Momoi Y, Hirosakil K, Kohmol A, McCabe JF. In vitro toothebrushdentifrrice abrasion of resin-modified glass ionomers. Dent Mater. 1997; 13(2): 82-8. 20. Turssi CP, Magalhães CS, Serra MC, Rodrigues Jr.AL. Surface roughness assessment of resin-based materials during brushing preceded by pHcycling simulations. Oper Dent. 2001; 26(6): 576-84. 21. Wang L, Cefaly DF, Dos Santos JL, Dos Santos JR, Lauris JR, Mondelli RF, et al. In vitro interactions between lactic acid solution and art glassionomer cements. J Appl Oral Sci. 2009; 17(4): 274-9. 22. Carvalho FG, Fucio SB, Paula AB, Correr GM, Sinhoreti MA, PuppinRontani RM. Child toothbrush abrasion effect on ionomeric materials. J Dent Child (Chic). 2008; 75(2): 112-6. 23. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater. 2009; 25(11): 1347-57. tween Rainitial and Rafinal (ΔRa) were also used for statistical analysis (α=0.05). Results: Except for the composite, significant loss of mass was observed for all glass ionomer cements and the ΔM was comparable for all of them. Significant increase in roughness was observed only for Vitremer and Ketac N100. At the end of the brushing cycle, just Vitremer presented surface roughness greater than the composite resin. Conclusion: All glass ionomer cements showed significant weight loss after 10,000 cycles of brushing. However, only Vitremer showed an increase of roughness greater than the Z350 resin, while the nanoparticulate cement Ketac N100 showed a smooth surface comparable to the composite.
Resumo:
To evaluate the surface roughness and Vickers hardness of glass ionomer cements Ketac Molar® and Ketac Molar Easy Mix® (ESPE Dental AG) after brushing. Methods – After roughness and hardness tests of 14 specimens of each material, they were submitted to 30,000 brushing cycles and new analysis of roughness and hardness. Statistical analysis showed that there was no significant difference between the materials in relation to the initial roughness. Results – However, after brushing there was higher surface roughness for Ketac Molar Easy Mix®. For both materials, there was increase of hardness after brushing and the highest values were presented by Ketac Molar Easy Mix®. Conclusion – It can be concluded that, when choosing a glass ionomer cement for restoration it should be preferred to Ketac Molar, because it showed hardness similar to Ketac Molar Easy Mix, but it was less rough.
Resumo:
The correction of bone defects is the restoration of lost structures which can be replaced by alloplastic implants or bone grafts. Due to the known disadvantages of removal of autogenous grafts, most researches in dentistry aim to develop alloplastic or non-alloplastic materials able to replace bone without these limitations. Beta-Tricalcium Phosphate (β-TCP) is a synthetic granular bone substitute, biocompatible, osteoconductive, which can be used in the alveolar reconstruction. In this work, we perform a literature review on the β-TCP characteristics and discuss its application in dentistry.
Resumo:
The present study aimed to analyze the effects of tooth bleaching with 10% carbamide peroxide (CP) gel on the bond strength of resin composite restorations to dentin. Material and Methods: Twenty cavities were prepared on the buccal surface of bovine teeth. After acid etching and application of bonding agent on dentin and enamel, the cavities were restored with composite resin. The specimens were divided into groups according to treatment on the surface of enamel / restoration: G1 - control (no treatment) and G2 (10% PC gel application for 8h/day during 14 days). After this period, the teeth were cut to produce beams with 0.81 mm2 cross-sectional area, which were subjected to microtensile test. The fractures were examined with a stereomicroscope and classified as cohesive in resin or dentin, adhesive, or mixed. Results: The statistical analysis (ANOVA / χ2) revealed that the factor treatment interfered with the bond strength, which was significantly higher for specimens of G2 (p <0.05). Adhesive fractures occurred in most of specimens of both groups with values ranging from 48.3% to 75%. Mixed fractures were the second more frequent in G1 and cohesive resin failure in G2. Conclusion: It was concluded that tooth bleaching with 10% of PC increased the bond strength of adhesive restorations to dentin.