384 resultados para Rare collisions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed computer simulations of interstellar cloud-cloud collisions using the three-dimensional smoothed particle magnetohydrodynamics method. In order to study the role of the magnetic field on the process of collision-triggered fragmentation, we focused our attention on head-on supersonic collisions between two identical spherical molecular-clouds. Two extreme configurations of the magnetic field were adopted: parallel and perpendicular to the initial clouds motion. The initial magnetic field strength was approximately 12.0 muG. In the parallel case, much more of the collision debris were retained in the shocking region than in the non-magnetic case where gas escaped freely throughout the symmetry plane. Differently from the non-magnetic case, eddy-like vortices were formed. The regions of highest vorticity and the the regions of highest density are offset. We found clumps formation only in the parallel case, however, they were larger, hotter and less dense than in the analogous non-magnetic case. In the perpendicular case, the compressed field works as a magnetic wall, preventing a stronger compression of the colliding clouds. This last effect inhibits direct contact of the two clouds. In both cases, we found that the field lines show a chaotic aspect in large scales. Also, the field magnitude is considerably amplified in the shock layer. However, the field distribution is almost coherent in the higher density regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bura do Itapira pua carbonatite is located in southern Brazil and belongs to the Cretaceous Ponta Grossa alkaline-carbonatitic province related to the opening of the South Atlantic. The carbonatite complex is emplaced in Proterozoic granites and is mainly composed of plutonic magnesio- to ferrocarbonatite, with smaller amounts of subvolcanic magnesiocarbonatite. Hydrothermal alteration of the carbonatite has led to the formation of quartz, apatite, fluorite, rue earth fluorocarbonates, barite and sulfides in variable proportions. Trace element data, delta(13)C and delta(18)O are presented here, with the aim of better understanding the geochemical nature of hydrothermal alteration related to rare earth elements (REE) mineralization. The non-overprinted plutonic carbonatite shows the lowest REE contents, and its primitive carbon and oxygen stable isotopic composition places it in the field of primary igneous carbonatites. Two types of hydrothermally overprinted plutonic carbonatites can be distinguished based on secondary minerals and geochemical composition. Type I contains mainly quartz, rare earth fluorocarbonates and apatite as hydrothermal secondary minerals, and has steep chondrite normalized REE patterns, with Sigma(REE+Y) of up to 3 wt.% (i.e., two orders of magnitude higher than in fresh plutonic samples). In contrast, the Type II overprint contains apatite, fluorite and barite as dominant hydrothermal minerals, and is characterized by heavy REE enrichment relative to the fresh samples, with flat chondrite normalized REE patterns. Carbon and oxygen stable isotope ratios of Types I and II are elevated (delta(18)O + 8 to + 12 parts per thousand; delta(13)C - 6 to - 2 parts per thousand) relative to the fresh samples. Hydrothermally overprinted carbonatites exposed to weathering show even higher delta(18)O values (delta(18)O 13 to 25 parts per thousand) but no additional REE enrichment. The subvolcanic carbonatite has anomalously high delta(13)C of up to + 1 parts per thousand, which suggests crustal contamination through interaction with carbonate-bearing metasediments. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth (RE) metals are essentials for the manufacturing of high-technology products. The separation of RE is complex and expensive; biosorption is an alternative to conventional processes. This work focuses on the biosorption of monocomponent and bicomponent solutions of lanthanum(III) and neodymium(III) in fixed-bed columns using Sargassum sp. biomass. The desorption of metals with HCl 0.10 mol L-1 from loaded biomass is also carried out with the objective of increasing the efficiency of metal separation. Simple models have been successfully used to model breakthrough curves (i.e., Thomas, Bohart-Adams, and Yoon-Nelson equations) for the biosorption of monocomponent solutions. From biosorption and desorption experiments in both monocomponent and bicomponent solutions, a slight selectivity of the biomass for Nd(III) over La(III) is observed. The experiments did not find an effective separation of the RE studied, but their results indicate a possible partition between the metals, which is the fundamental condition for separation perspectives. (C) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012