320 resultados para Nanocrystalline TiO2
Resumo:
Our efforts were directed to the preparation of bismuth titanate - Bi 4e;Ti3O12 (BIT) by mechanically assisted synthesis. The mechanical activation was applied to prepare bismuth titanate, Bi4e;Ti3O12, from bismuth oxide, Bi 2O3, and titanium oxide, TiO2 (in an anatase crystal form). Mechanochemical synthesis was performed in a planetary ball mill in air atmosphere. Bismuth titanate ceramics was obtained by sintering at 1000° C The formation of Bi4e;Ti3O12 in the sintered samples was confirmed by X-ray diffraction analysis. Scanning electron microscopy, SEM, was used to study the particle size and powder morphology. The obtained results indicate that Bi4e;Ti3O12 from the powder synthesized by high-energy ball milling exhibits good sinterability, showing advantage of the mechanochemical process over conventional solid-state reaction.
Resumo:
Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.
Resumo:
Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This review focuses on the heterogeneous photocatalytic treatment of organic dyes in air and water. Representative studies spanning approximately three decades are included in this review. These studies have mostly used titanium dioxide (TiO2) as the inorganic semiconductor photocatalyst of choice for decolorizing and decomposing the organic dye to mineralized products. Other semiconductors such as ZnO, CdS, WO3, and Fe2O3 have also been used, albeit to a much smaller extent. The topics covered include historical aspects, dark adsorption of the dye on the semiconductor surface and its role in the subsequent photoreaction, semiconductor preparation details, photoreactor configurations, photooxidation kinetics/mechanisms and comparison with other Advanced Oxidation Processes (e.g., UV/H2O2, ozonation, UV/O3, Fenton and photo-Fenton reactions), visible light-induced dye decomposition by sensitization mechanism, reaction intermediates and toxicity issues, and real-world process scenarios. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The petrographic and geochemical characterization of flood basalts of Serra Geral Formation are here presented. The investigated areas are situated in four different regions of São Paulo state: Jaú, Ribeirão Preto, Franca and Fernandópolis. They represent almost the total area of outcrops of basalts in the São Paulo State. The petrographical data reveals that these rocks are constituted mainly by plagioclase (30-40%), pyroxenes, augite and pigeonita (20-30%) and magnetite (5-15%), and show a intergranular texture and its varieties intersertal, hialophitic and pilotaxitic. The geochemical data show a basic and tholeiitic affinity of the studied basalts, with high-Ti content (TiO2 > 1.8%), typical of the northern region of Paraná Basin. Three different magma-types were recognized: Paranapanema, Urubici and Pitanga. The first magma-type is concentrated in the Fernandópolis region, the second in the Franca region, and the Pitanga occurs in the Ribeirão Preto and Jaú regions. The distribution patterns of these magma-types and the detailed study of geochemical data showed that they are, probably, generated by a melting of a continental lithospheric mantle.
Resumo:
The basalts of the Formação Serra Geral in Parana Basin in the Mato Grosso do Sul and Mato Grosso states cover an area of 180,000 km2. They rest on the Botucatu sandstones and they are recovered by the sedimentary rocks of Bauru and Caiuá Groups. The mineralogical composition of these rocks are plagioclase (40%-55%), clinopyroxenes (19%-40%; augite and pigeonite), opaque minerals (2%-10%; magnetite and ilmenite) and olivine (1.5%). Geochemical data show two different types of basalts, named ATi-Pitanga (2.6% < TiO2 < 4.2%; 396 ppm < Sr < 438 ppm) and BTi-Ribeira (1.7% TiO2 <2.4%, 246 ppm < Sr < 286 ppm). In general, ATi-Pitanga have gently higher La/Yb(n) (6,1 ± 1,5ppm) than those BTi-Ribeira (5.6 ± 1,7ppm). The geochemical differences between ATi-Pitanga and BTi-Ribeira probably are related to different degrees of partial melt of a same mantle source, or to different mantle sources. The field relations show that BTi-Ribeira is displaced towards the north-western margin of the Paraná Basin and the thickness of lava flows increases towards the Paraná Graben, suggesting that ATi-Pitaga overlies BTi-Ribeira.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.
Resumo:
An investigation on the sinterization of Gd:CeO2 (Ce 0.85Gd0.15O1.9-δ ceramic system) 3-10 nm nanoparticles in pressed bodies was done. The heating rate was taken as a key parameter and two competing sinterization processes were identified, associated with different diffusional mechanisms. Using heating rates of 113 C min -1, a high-final density (98 % of the theoretical) was obtained by superposing the two aforementioned mechanisms, resulting in a homogeneous microstructure at lower temperatures. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
A simple hybrid synthesis processing method was developed to synthesize γ-MnO2 nanocrystalline particles. The polyol method was modified by the addition of nitric acid in order to allow the synthesizing of single-phase Mn3O4 in a large scale. In the sequence, the acid digestion technique was used to transform Mn3O4 into γ-MnO2. Structural and morphological characterization was carried out by X-ray diffractometry, Infrared and Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption isotherm, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The synthesized material exhibits a specific capacitance of 125.1 F g-1 at a mass loading of 0.98 mg cm-2. The relation between structural features and electrochemical activity is discussed by comparing the synthesized material with commercial electrolytic manganese dioxide. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Bismuth titanate templates (Bi4Ti3O12) were synthesized by the molten salt method in Na2SO4 and K2SO4 fluxes, using an amorphous Bi4Ti 3O12 precursor and a mechanically mixed Bi 2O3+TiO2 mixture as the starting materials. The templates were characterized by means of X-Ray Diffraction, FT-IR, FT-Raman, FEG-SEM and TEM. The templates are free of secondary phases and present orthorhombic structure with orientation in the c-plane. FT-IR suggests no traces of sulfate groups revealing that the molten salt synthesis was beneficial for elimination of inorganic species and for the arrangement of individual nanocrystals into ordered lattices. FEG-SEM analyses of BIT templates revealed that most of the grains were homogeneous with a length of 3.1 μm and a width of 0.3 μm and had plate-like morphology. TEM investigations show that the c-axis of the perovskite units is parallel to the thickness direction of the grains and no liquid-phase was formed during BIT phase formation. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
The Rio Preto Project, developed by the extinct Brazilian nuclear state company, Nuclebrás, during the late 70s and early 80s, consisted of basic geological mapping and radiometric characterization by aerogeophysical gamma-ray spectrometry, without channel discrimination, of a surface area of 650 km2 located to the west of the Chapada dos Veadeiros National Park on the northeastern of Goiás State, Brazil, including the confluence area of Claro and Preto Rivers. Additionally, the natural radioelements U, Th and 40K were determined by gamma-ray spectrometry in 300 rock samples from cores of the Rio Preto Project area. The tests were conducted at LABIDRO-Isotopes and Hydrochemistry Laboratory of the Departament of Petrology and Metallogeny (DPM) of the Institute of Geosciences and Exact Sciences, UNESP, in Rio Claro, SP, Brazil. This paper reports the results of petrographic characterization and chemical analyses of major oxides (SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO, K2O, Na2O, CaO and P2O5) for all samples used to determine the natural radioelements present in the region. The organic matter content results obtained by colorimetry are also reported for selected cores of different lithotypes in order to investigate the possible relationship between graphite and the radioelements uranium and thorium. Finally, uranium content and 234U/238U activity ratio data for selected samples of schists and gneisses of the Lower Member of the Ticunzal Formation suggest the influence of weathering processes in the area. © 2012 Sociedade Brasileira de Geofísica.