344 resultados para Energia elétrica – Transmissão
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines
Resumo:
The tertiary sector is largely responsible for the growth of electricity consumption in Brazil. The large commercial and public buildings, hypermarkets and shopping centers stand out as major consumers of electricity for lighting, power and thermal energy. Brazil presents significant potential for the deployment of small cogeneration plants, especially in the tertiary sector. Allied to this, the possibility of natural gas supply and the growing demands in favor of maintaining and preserving the environment favor the implementation of cogeneration plants. In this context, this paper presents a technical and economic analysis of installing a cogeneration plant using internal combustion engine with natural gas in a mall
Resumo:
Smart grids are the focus of major study today because of the necessity of modernization in electrical systems and reduction of greenhouse gas emissions that increases global warming. Reaching the best deployment method, you must first of all know the current electrical system and how to use them for the benefit of this new technology. Preparing the action plan we should be aware of the main points of smart grids in each step of the electricity system - generation, transmission and distribution. Analyzed these topics, this work will focus on the first step in the implementation of the smart grids: the smart meters, tool which is already being implemented in Brazil. The main characteristics and applications of these devices, as well as their communication structure with the core distributors will be showed during the paper. Finally, we present a case study which will be discussed and analyzed based in the results obtained with the implementation of smart meters in the city of Vancouver, Canada, where we have a considerable savings already in the first year, with fully paying the initial investment and still have a profit
Resumo:
Brazil is nowadays the greatest bet of investors for the future due to its stable economy growth. The country has grown side by side with the greatest demand for electrical energy. The international appeal for renewable sources is causing a change in the Brazilian energetic matrix, raising the amount of energy generated by thermoelectric power plants. The construction of new power plants, running on biomass, requires a crescent number of capacitated personnel to run them. The Faculdade de Engenharia de Guaratinguetá – UNESP – has a steam laboratory; witch is deactivated, which has a thermoelectric plant of small capacity. The laboratory reactivation and the return of its activities can be an important tool in order to graduate engineer able to operate on such units. This paper proposes four new experiments to be simulated on the Collage’s Energy Dep. Steam Lab when it gets back to its educational activities
Resumo:
The landfill biogas can be an alternative energetic resource as a fuel to electrical energy generators, although, there are not too many techniques to prospect the gas. Usually, landfills receive home waste, which in most are constituted by organic matter whose degradation by anaerobic activity produces the biogas. Geophysics is an important tool in environmental studies and the electrorresistivity, an important method employed in contaminated areas by slurry or necroslurry, including a monitoring for each contaminator flow. The electrorresistivity has not too much application in finding biogas. For this work, two biogas drains in Rio Claro-SP landfill were selected: one whose waste disposition correspond to the initial activities in the landfill and another drain whose disposition started more recently. The result consists in a higher biogas production if compared to the biogas from the older drain. The present paper consists in a monitoring along one year, with dates collection in each fifteen days. These dates were tabled in Excel 2010 program and graphics of resistivity x depth were generated. Hereafter, most variable resistivity values depth were chosen, to further graphics pluviosity x resistivity generation in Grapher 8 program and the biogas output (m³/h) in monitoring period. The use of pluviosity parameter can be justified by its influence above resistivity. The results show that there is a horizon with possibly biogas accumulation. Lastly, the method was effective, although, for any application of geophysical methods, the knowledge about its limitations is necessary; in this case the influence of pluviosity and also that the measurements were made in one single point, it will not show any side variation
Resumo:
One of the biggest environmental problems of today is the climate change. Experts affirm that this global warming is related to the greenhouse effect. Its causes are directly related to human activity, especially the use of fossil fuels. In this context, companies around the world are challenged to improve energy efficiency in order to reduce the environmental impact and work toward the so-called tripod of sustainable development that focuses on the social, economic and environmental aspects of a business strategy. The first step a company can make in this regard is to conduct an inventory of emissions of greenhouse gases (GHGs). The reduction of GHG emissions in a refinery can be achieved by replacing steam turbines with electric motors to drive big machines, this reduction is achieved by relieving the steam consumption for electric power available or purchased. An important aspect associated with the reduction of GHG emissions is the best performance of the Energy Intensity Index (ERI). The objective of this study was to analyze the feasibility of the blower motorization in the regenerative cycle of a fluidized catalytic cracking unit at a specific refinery. For development work, two methods were used, the initial screening and optimization scenarios with the help of software Butyl. The results indicate that after a certain cost of natural gas this substitution becomes favorable. In addition, there is a large reduction of CO2 emissions avoided by burning fuel
Resumo:
In this paper are compared two methods of deploying electrical substations, conventional type, when installed at open areas (Air Insulated Switchgear - AIS), and compact gas-insulated (Gas Insulated Switchgear - GIS) when installed inside buildings. With the expansion of urban centers, areas available for deployment of conventional substations become increasingly difficult to find in these locations. Also due to speculation in urban areas, it becomes feasible to install Gas Insulated Switchgear. This paper presents and evaluates criteria with advantages and disadvantages for application of the two methodologies, aiming to assist in decisionmaking moment of choice in deployment of Electric Power Substations in two scenarios. It is expected that at the end of this work, the criteria evaluated assist in this decision making
Resumo:
This paper is about a case study of using solar energy and wind energy in a farm. For this purpose were collected from the property, such as water consumption and amount of residents. So, we estimate how many conventional panels or PET bottle panels and boiler needed to supply the farm with warm water. It also calculates the amount of photovoltaic panels and the main accessories for converting solar energy into electrical energy. For the pumping of water using photovoltaic panels is dismissed and dimensioned to be a watermill
Resumo:
Esta pesquisa trata de um grande projeto hidrelétrico, Inambari, que estava se transformando em realidade como parte de acordos entre o governo do Brasil no segúndo período de Lula (2006-2010) e do governo peruano de Alan Garcia – AG (2006-2011). Inambari é um dos mais recentes projetos hidrelétricos peruanos feitos para exportar ao Brasil. Mas, apesar de formar parte de um acordo entre esses países, por agora está detido devido a protestos e mobilizações da população dos territ´porios de Inambari contra a política hegemônica de AG. Analogamente ao caso da estrada Interoceãnica Sul, a construção e operação da Usina Inambari pode ser entendida como um caso emblemático no cenário Latino Americano atual. Esta não seria apenas o maior projeto hidrelétrico da amazônia peruana, custando aproximadamente 4 bilhões de dolares e prometendo um potencial de geração de energia elétrica de cerca de 2.200 MW para exportar ao Brasil por ano, mas também concretizaria o vínculo energético estratégico entre estes dois países através de um complexo de usinas e linhas de transmissão interconectados. Para sua concretização se conta com o amparo financeiro e legislativo dos dois governos e suas instituições de fomento, além de instituições de internacionais de investimento (como o BID e o BM) e do capital internacional (este útlimo proveniente principalmente de empreiteiras brasileiras beneficiárias do modelo de concessões federais). Aqui se estudam os potenciais impactos na economia amazônica do modelo vigente de exploração de recursos naturais hídricos amazônicos através do caso INAMBARI. A conclusão aponta que inexistência de participação popular como o maior entrave ao desenvolvimento amazônico e tenta explicar a novaconfiguração dos movimentos sociais que buscam voz para os povos da Amazônia bem como o pioneirismo peruano em relação a lei de consulta prévia
Resumo:
Currently the mobile services represent an essential tool in daily life of the population. However, while offering greater convenience to its users, there is growing concern about the harmful effects to human health, derived from daily exposure of the public to electromagnetic fields from radio base stations (RBS), since even today, there is no study proving that longterm exposure to low-level fields are not harmful to health. In Presidente Prudente has not been a study reporting values of measurements of electromagnetic fields from base stations installed in the city. Based on these data, this study aimed to assess the levels of electromagnetic exposure in the city of Presidente Prudente regarding recommended by international bodies, as well as propose measures that can reduce public exposure to electromagnetic fields. For measuring values of electromagnetic fields, we used appliance Electromagnetic Field Meter Portable Digital - DRE-050, the Instrutherm, following the methodology suggested and adapted from the Adilza Condessa Dode’study. In total, 49 points were mapped corresponding to the areas at risk of exposure to electromagnetic fields generated by the substations of power grid, transmission towers and telecommunication towers located in the city of Presidente Prudente (SP)
Resumo:
This paper is proposed the usage of an Organic Rankine Cycle (ORC) along with waste heat recovery from an inconstant heat source. This method of waste heat recovery with intermittent heat source is part of a technical viability study. This paper also brings up the usage of thermal energy storage as heat source for the ORC. This paper is based on a heat treatment company study in which a natural gas furnace is explored. Data such as mass flow, temperature and specific waste gas heat from this furnace are used through calculations. Calculations are made also based on furnace cycles. This viability study considers a series of working fluids such as ammonia, benzene, R113 and R134a. Results point out that ORC with out thermal storage and using refrigerant fluid ammonia is the best alternative
Resumo:
This work, based in a patent request at INPI, protocol no. 020110035974, presents a system development using solar panels to supply the electricity demand required by punctual loads, without a storage unit or utility grid synchronism, through a control circuit that allows parallel operation with the power grid during low sunlight incidence periods. A study about solar panel construction and topologies for Power generation was done, in a atempt to evalute impacts in project. This development was modular, providing the system the possibility of power capacity expansion and load diversity as well, in an attempt to reduce the total energy requirements from the residential sector drained from the power grid along the day
Resumo:
With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards
Resumo:
In the last decades it has been observed a substantial developing of the electrical energy demand in the societies all over the World. In consequence the electrical energy distribution companies are increasing the quantity of electrical energy through the electrical energy conductor cables, which had grown the sag in the towers of energy transmission. Furthermore, the construction of more transmission towers brings a lot of troubles due environmental protection laws. In this way, looking forward to increase the quantity of electrical energy transmitted through electrical cables conductors, reduce the need of constructing new transmission towers and the sag in them, we suggest in this work the replace of the traditional core of the conductors cables commonly used, made of steel, by a core made by a composite material, which one is made by carbon fibers pultruded with polymeric resins as matrix. In a order to evaluate if the resins more commonly used in structural composites can be applied as matrix to make possible to use the composite material as a core, we made carbon fibers systems pultruded with epoxy, phenolic and polyester resins as matrix and a mechanic and physic-chemistry characterization was done on the systems by Tensile and Poisson tests, differential sprobe calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transformed infrared spectroscopy (FTIR), following their correspondents standards