455 resultados para Electric Power Transmission
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
This paper presents the analysis that have been carried out in the alarm system of the DCRanger EMS. The intention of this study is to present the problem of alarm processing in electric energy control centers, its various aspects and operational difficulties due to operator needs. Some tests are produced in order to identify the desirable features an alarm system should possess in order to be of effective help in the operative duty. © 2006 IEEE.
Resumo:
In this paper a genetic algorithm based reconfiguration method is proposed to minimize the real power losses of distribution systems. The main innovation of this research work is that new types of crossover and mutation operators are proposed, such that the best possible results are obtained, with an acceptable computational effort. The crossover and mutation operators were developed so as to take advantage of the particular characteristics of distribution systems (as the radial topology). Simulation results indicate that the proposed method is very efficient, being able to find excellent configurations, with low computational effort, especially for larger systems. ©2007 IEEE.
Resumo:
Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.
Resumo:
Open access philosophy applied by regulatory agencies may lead to a scenario where captive consumers will solely face the responsibility on distribution network's losses even with Independent Energy Producers (also known as Distributed Generation) and Independent Energy Consumers connected to the system. This work proposes the utilization of a loss allocation method in distribution systems where open access is allowed, in which cross-subsidies, that appear due to the influence the generators have over the system losses, are minimized. Thus, guaranteeing to some extent the efficiency and transparency of the economic signals of the market. Results obtained through the Zbus loss allocation method adapted for distribution networks are processed in such a way that the corresponding allocation to the generation buses is divided among the consumer buses, while still considering consumers spatial characteristics. © 2007 IEEE.
Resumo:
Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. The proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. Finally, the proposed control strategy is verified through experimental results from an implemented prototype. ©2008 IEEE.
Resumo:
In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. Finally, the proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. The proposed strategy is verified by experiments. © 2008 IEEE.
Resumo:
The development of new techniques that allow the analysis and optimization of energy systems bearing in mind environmental issues is indispensable in a world with finite natural resources and growing demand of energy. Among the energy systems that deserve special attention, cogeneration in the sugar industry must be pointed out, because it uses efficiently a common fuel for generation of useful heat and power. Within this frame, thermoeconomical optimization - 2nd Law of Thermodynamics analysis by exergy function and economic evaluation of the thermal system - gradually is taking importance as a powerful tool to assist to the decision making process. Also, the explicit consideration of environmental issues offers a better way to explore trade-offs between different aspects to support the decisions that must be made. In this work it is used the technique of Life Cycle Analysis (LCA) which allows to consider environmental matters as an integral part of the problem, in opposite to most of the environmental approaches that only reduce residuals generation , without taking into account impacts associated to other related processes. On the other hand, the consideration of environmental issues in optimization of energy systems is a novel and promissory contribution in the state of the art of energy optimization and LCA. The system under study is a sugar plant of Tucumán (Argentina) given the particular importance that this industry had inside the regional economy of the Argentinean Northwest. Although cogeneration comes being used a while ago in sugar industry, being the main objective the generation of heat and as secondary objective the electric power generation and mechanic power to cover several needs of working machineries, to the date it is no available a versatile tool that allows to analyze economical feasible alternatives bearing in mind environmental issues. At sugar plants, steam is generated in boilers using as fuel bagasse - cellulosic fiber waste obtained crushing the sugar cane- and it is used to give useful heat and shaft work to the plant, but it can also be used to generate electricity with export opportunities to the electrical network. The great number of process alternatives outlines a serious decision making problem in order to take advantage of the resources. Although the problem turns out to be a mixed non-linear problem (MINLP), the main contribution of this work is the development of a hybrid strategy to evaluate cogeneration alternatives that combines optimization approaches with environmental indicators. This powerful tool for its versatility and robustness to analyze cogeneration systems, will be of great help in the decision making process, because of their easy implementation to analyze the kind of problems presented in the sugar industry.
Resumo:
This work was based on a methodology of development and experimentation, and involved monitoring the dressing operation by processing the acoustic emission and electric power signals to detect the optimal dressing moment. Dressing tests were performed in a surface grinding machine with an aluminium grinding wheel. Dressing analysis software was developed and used to process the signals collected earlier in order to analyse not only the dressing parameters but also the software's ability to indicate the instant when the dressing operation could be concluded. Parameters used in the study of burn in grinding were implemented in order to ascertain if they would also prove efficient in monitoring dressing. A comparative study revealed that some parameters are capable of monitoring the dressing operation. It was possible to verify the parameters effectiveness that today are utilised in burning to monitor dressing as well as to create new parameters for monitoring this operation. Copyright © 2009, Inderscience Publishers.
Resumo:
A digital-desk pilot program, named One Laptop Per Child (OPLC), in Brazil uses a unique display design to provide an interactive interface developed to enhance education and minimize ergonomic concerns. The one-to-one computer strategy as proposed by Nicholas Negroponte is a way of circumventing the tragedy of the locked computer lab because it gives children full access to computers anytime. The OLPC program has focused on a solution that minimizes power consumption, which also limits the display's maximum size and processor performance because the LCD backlights are responsible for a significant part of the power consumption in laptops. The government has also developed a new type of low-cost tablet that is based on a resistive principle. High transparencies can be obtained in the 90% range in the tablet, while robustness is guaranteed by the outstanding tribological characteristics of Sn02 on glass.
Resumo:
This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single and three-phase compensation strategies will be discussed by means of the CPT Framework. Simulation and experimental results will be demonstrated in order to validate their performance. © 2009 IEEE.
Resumo:
This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.