278 resultados para ELECTROCHEMICAL SENSORS
Resumo:
Electrochemical experiments in acetic acid-acetate buffer (pH 4.5) are conducted in order to understand metallic and ionic mercury adsorption processes on the pyrite surface. The nature as well as the extent of the spontaneous interaction between pyrite and mercuric ions was evaluated. The spontaneous reduction of mercury species onto pyrite surface was confirmed. These results represent a first step for the use of mining wastes rich in pyrite for mercury pollution abatement. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cyclic voltammograms and capacitance measurements are presented to characterize the mineral response at relatively moderate environmental conditions, pH 4.5 and T = 25degreesC. The experiments involve examining the rates of oxidation and the surface morphology of arsenopyrite, which is oxidized abiotically. The semiconducting properties of the mineral have been investigated in attempt to gain additional information of FeAsS dissolution behavior in acidic solutions at potentials close to the open circuit potential of the mineral. A mechanistic pathway for the anodic dissolution of arsenopyrite in open circuit conditions is also suggested. At high overpotentials, anodic reactions produce mainly sulfate and arsenate ions and may be described as hole limited. The reduction of orpiment-like compounds at potentials more negative than the open circuit potential is discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work was to evaluate the corrosion resistance of AuPdAgIn alloy, submitted to laser beam welding, in 0.9% NaCl solution, using electrochemical techniques. Measures of the open circuit potential (OCP) versus time were applied to electrochemical experiments, as well as potentiodynamic direct scanning (PDS) and electrochemical impedance spectroscopy (EIS) on AuPdAgIn alloy, submitted to laser beam welding in 0.9% NaCl solution. Some differences observed in the microstructure can explain the results obtained for corrosion potential, Ecorr, and corrosion resistance, Rp. EIS spectra have been characterized by distorted capacitive components, presenting linear impedance at low frequencies, including a non-uniform diffusion. The area of the laser weld presented corrosion potential slightly superior when compared to the one of the base metal. The impedance results suggest the best resistant corrosion behavior for laser weld than base metal region. This welding process is a promising alternative to dental prostheses casting.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrooxidation of hydroxylamine, NH2OH, in 0.1 M phosphate buffer (PB, pH = 7) on Pt-, and Pd-modified Au electrodes prepared by galvanic displacement of underpotential deposited Cu, was investigated by electrochemical techniques and three and in situ vibrational probes, substrate-induced surface enhanced Raman scattering, SI-SERS, surface enhanced infrared absorption, SEIRAS, and Fourier transform infrared reflection-absorption, IRAS, spectroscopies. Analyses of the results obtained made it possible to identify at low overpotentials, solution phase (sol) and adsorbed (ads) nitric oxide, NO, as well as solution phase nitrous oxide, N2O. As the potential was increased, the peak(s) ascribed to NO(ads) gained in intensity and new features associated with NO2−(ads) and NO2−(sol) were clearly discerned. Further excursion toward higher potentials yielded an additional peak assigned to NO2(ads). This behavior is analogous to that found for bare Au electrodes in a potential region in which the metal is at least partially oxidized under otherwise the same experimental conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work has main aim of is to propose the synthesis and characterization of nanostructured materials for oxidation of carbohydrates such as glucose, with non-enzymatic catalysis. The proposed pathway of synthesis of metal catalysts is the polyol method and techniques of physical characterization proposals for analysis of prepared catalyst pass through diffraction technique of ray-x (DRX), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy ray-x (EDX). Technical proposals for the electrochemical characterization of the synthesized catalysts are Cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The prospects of this work are compared by the catalytic activity of the sensor designed with non-enzymatic sensors and biosensors also known in the literature
Resumo:
From the last decade of the twentieth century, the rapid growth of nanotechnology has resulted in the discovery of a number of forms of nanoparticles and nanoclusters. We can cite as an example: nanotubes, nanowires, nanobelts, and nanoconesnanoclusters which have a wide range of applications, particularly as catalysts magnetic material nanodevices, chemical sensors, degradation of toxic chemicals, or even as possible carriers for the isotope medical applications.. The first step is the production and characterization of nanowires multithreaded using different types of metals (nickel, silver, gold) and polymers (pyrrole), which are prepared by electrochemical deposition process. Will be held by the characterization of the same images of scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)