318 resultados para Consumo : Energia elétrica : Edificações
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The solar energy is far the largest source of energy available in earth and has attracted for milleniuns, the attention and interest for a rational use. The solar energy which strikes the Earth in one hour is bigger than the whole consume of energy in Earth in one year. Among the forms of transformation of this clean, renewable energy, the electrical conversion, photovoltaic cells, have the materials based on silicon or germanium semiconductors due to its technology and production processes involved still have a high production cost. An alternative to this solar cell is based on a synthetic dye and a semiconductor nanocrystalline TiO2, titanium dioxide, called DSC (Dye-Sensitized Cells), which have a cost of up to 80% lower than silicon cells
Resumo:
This work has the purpose to explain how the sugar and alcohol sector works, detail all the processes which uses pumps and assist in the selection and specification of pumps attached with engines, that will make part in important industry processes in the manufacture of sugar and alcohol. A bibliographic revision about the working of sugar and alcohol sector and about pumps were made to help the analysis of a case. This case had the purpose to analyze the selected pumps that were part of a initial project of an industry which aimed a future expansion. The pumps that were selected to made part of the initial project were over dimensioned and were operating out of the best performance point, making the pumps inefficient because the expansion didn't happened. The solution was to select another pump with bigger performance and less power consumption to have a decrease in the energy consumption and in the operational costs of the industry and using the extra electric energy in the industry or selling it
Resumo:
Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines
Resumo:
Smart grids are the focus of major study today because of the necessity of modernization in electrical systems and reduction of greenhouse gas emissions that increases global warming. Reaching the best deployment method, you must first of all know the current electrical system and how to use them for the benefit of this new technology. Preparing the action plan we should be aware of the main points of smart grids in each step of the electricity system - generation, transmission and distribution. Analyzed these topics, this work will focus on the first step in the implementation of the smart grids: the smart meters, tool which is already being implemented in Brazil. The main characteristics and applications of these devices, as well as their communication structure with the core distributors will be showed during the paper. Finally, we present a case study which will be discussed and analyzed based in the results obtained with the implementation of smart meters in the city of Vancouver, Canada, where we have a considerable savings already in the first year, with fully paying the initial investment and still have a profit
Resumo:
Brazil is nowadays the greatest bet of investors for the future due to its stable economy growth. The country has grown side by side with the greatest demand for electrical energy. The international appeal for renewable sources is causing a change in the Brazilian energetic matrix, raising the amount of energy generated by thermoelectric power plants. The construction of new power plants, running on biomass, requires a crescent number of capacitated personnel to run them. The Faculdade de Engenharia de Guaratinguetá – UNESP – has a steam laboratory; witch is deactivated, which has a thermoelectric plant of small capacity. The laboratory reactivation and the return of its activities can be an important tool in order to graduate engineer able to operate on such units. This paper proposes four new experiments to be simulated on the Collage’s Energy Dep. Steam Lab when it gets back to its educational activities
Resumo:
The landfill biogas can be an alternative energetic resource as a fuel to electrical energy generators, although, there are not too many techniques to prospect the gas. Usually, landfills receive home waste, which in most are constituted by organic matter whose degradation by anaerobic activity produces the biogas. Geophysics is an important tool in environmental studies and the electrorresistivity, an important method employed in contaminated areas by slurry or necroslurry, including a monitoring for each contaminator flow. The electrorresistivity has not too much application in finding biogas. For this work, two biogas drains in Rio Claro-SP landfill were selected: one whose waste disposition correspond to the initial activities in the landfill and another drain whose disposition started more recently. The result consists in a higher biogas production if compared to the biogas from the older drain. The present paper consists in a monitoring along one year, with dates collection in each fifteen days. These dates were tabled in Excel 2010 program and graphics of resistivity x depth were generated. Hereafter, most variable resistivity values depth were chosen, to further graphics pluviosity x resistivity generation in Grapher 8 program and the biogas output (m³/h) in monitoring period. The use of pluviosity parameter can be justified by its influence above resistivity. The results show that there is a horizon with possibly biogas accumulation. Lastly, the method was effective, although, for any application of geophysical methods, the knowledge about its limitations is necessary; in this case the influence of pluviosity and also that the measurements were made in one single point, it will not show any side variation
Resumo:
The objective of this project is to collaborate with the society, working on a subject that is directly linked to issues of sustainability and environmental preservation. For this, a survey is being developed in order to make possible the creation of an intelligent mechanism, with the use of wireless solutions for the control of energy consumption in order to meet the needs of quality of life and reduce the average consumption of electrical energy. An intelligent lighting system can be explained simply, as an interconnected network of lamps in order to meet needs such as light intensity, the location of it, the moment will turn on or turn off the lights, among other possibilities. This network of lamps is controlled by algorithms implemented using microcontrollers, which may or may not have changed its characteristics. This can be automatic (pre-programmed by the administrator) or manual (controlled via a remote control, phones, etc.), and will depend upon the manager himself and also the characteristics imposed on the project. However, it is important to note that after the search is complete, decisions will be consistent with the Brazilian reality, ie, this system can only be feasible if it has all the characteristics described above, but with an affordable price so that people can acquire it
Resumo:
This paper presents a study on the labeling Procel Build, an action plan for energy efficiency in buildings which aims to build the foundations necessary to rationalize energy consumption in buildings in Brazil (PROCEL, 2009a, p. 5), ie Procel builds aims to ensure the construction of the building that has a low energy expenditure, but still provide a comfortable environment. In this research, it is also shown how the labels are obtained, which may be general or partial. The reader will find further explanation of the three aspects of a building, and they Envelopment, Lighting system and Air Conditioning System Finally, we present the advantages and challenges of system builds procel, showing the need for greater investment and disclosure of elements that contribute to the implementation of sustainable buildings in Brazil
Resumo:
This work contemplates an opportunities study of the rational use of energy in an industrial unity from the demand analysis and electrical energy consumption. Through a guide of energy analysis it was described how to find the main problems that create energy wastes in an industry, showing the ways so the production processes avoid such wastes and start to use energy in a more sensible e efficient way. It was also studied, the technical e economical viability of possible interventions to be implemented in terms of energy conservation and of possible demand supply alternatives
Resumo:
Nowadays, the biggest part of the world's energy supply comes from fossil fuels and nuclear. However, the current need of the society for the preservation of the environment and wise use of natural resources, has favored the search for alternative energy sources and improvement of energy efficiency. In this new scenario, companies are beginning to mobilize in order to adapt its facilities to renewable energy. Solar, with its immense potential, not really exploited yet, can be very useful for companies that want to beat their sustainability goals. Given these facts, the aim is to evaluate the economic viability of introducing a solar water heater which uses a colorless PET bottle as one of its components in a plant. The hot water generated will heat the air of a paint booth and a warm house, reducing energy consumption, since they are heated by electric heaters
Resumo:
In this paper are compared two methods of deploying electrical substations, conventional type, when installed at open areas (Air Insulated Switchgear - AIS), and compact gas-insulated (Gas Insulated Switchgear - GIS) when installed inside buildings. With the expansion of urban centers, areas available for deployment of conventional substations become increasingly difficult to find in these locations. Also due to speculation in urban areas, it becomes feasible to install Gas Insulated Switchgear. This paper presents and evaluates criteria with advantages and disadvantages for application of the two methodologies, aiming to assist in decisionmaking moment of choice in deployment of Electric Power Substations in two scenarios. It is expected that at the end of this work, the criteria evaluated assist in this decision making
Resumo:
The use of refrigeration and air conditioning systems is of fundamental importance when it comes to air-conditioning of environments. Also important is the use of electricity for equipments’ operation related to these systems. Due to high cost of charging for this type of energy, factors economy and efficiency occupy key roles among design parameters of a system. One of the ways to get this economy is the use of a technique called thermal storage, or cold storage, which intends to move the required loads during peak time and also their equalizing, so that the energy is transferred from the peak time to non-peak time, thereby reducing the cost of energy consumed. Cold can be stored in the form of ice or ice water. This work aims to perform a technical-economic analysis of a mall located in Vale do Paraíba checking the feasibility of deploying a thermal storage system to achieve an economy in the cost of the energy used by the establishment. Through the parameters measured by the concessionaire of energy we can get the values of energy demand and power consumed, which will serve as basis for calculation for the study. The results obtained allow the development of two alternative proposals to the current configuration, one chosen by the criteria and results presented by technical-economic and energy analysis
Resumo:
This study aims to prove the economic feasibility of the installation of mechanical compression chillers on plastic injection molding machines in order to reduce the production cycle time of toothbrush cables in a specific case study. This evidence was confirmed by the comparative analysis of the system replaced and the new system installed. The old system had only one closed loop cooling tower which pumped chilled water to the injection molds, and the new system has the same tower sending cold water to the condensers of individual chillers installed on each injection machine. We conducted an analysis of energy efficiency in each system, showing that in terms of thermal efficiency virtually nothing has changed, but in terms of electricity demand the new system consumes 60.3 kW more. We conducted an analysis of machine productivity for both systems, showing a much higher productivity of the new system due to reduced cycle times caused by the presence of chillers and their greater cooling capacities. Equipped with data such as electricity rates, increases in operating costs and initial investments, the increase in consumption and demand of electricity plus the cycle time reduction were also calculated over so the simple payback 1 year and 2 months was reached