520 resultados para specific leaf area
Resumo:
Polycrystalline Co7Sb2O12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100degreesC for 2h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co6Sb2O6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co7Sb2O12 displays an inverse spinel crystalline structure. In this structure, the Co2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb5+ and Co2+ ions. IR studies disclosed two strong absorption bands, v(1) and v(2), in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T-f similar to 64 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents the preparation of SrBi2Nb2O9 (SBN) directly by the combustion synthesis. Strontium nitrate, niobium ammonium oxalate (NH4H2[NbO-(C2O4)(3)].3H(2)O) and bismuth oxide were used as oxidant reactants and urea as fuel. The influence of the fuel was evaluated by the addition of different fuel amounts (50%, 100%, 200% and 300%), 100% being the stoichiometric proportion. The XRD patterns showed that the SBN perovskite crystallized as the majority phase. The as-synthesized stoichiometric powder presented a specific surface area of around 13 m(2)/g and a mean grain size of around 16 nm. Dilatometric measurements showed that the maximum sintering rate occurs at 1275degreesC. The determination of the ferroparaelectric transition showed a Curie temperature (T-c) of 429degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study includes Ca-PZT in the morphotropic phase boundary, MPB process combining the Pechini method, (ZT) and the Partial oxalate method (Ca-PZT) by obtaining single phase particles of ZT phase with a high specific surface area (similar to 110 m(2)/g at 550 degrees C) and narrow particle size distribution. Lead and calcium oxalates were precipitated onto the ZT particle surface and reacted to a solid state interface ZT/Ca-PZT/PbO-CaO. A deviation of a coexistence region from F-T- and F-R-phases to F-R-phase (Zr rich region) was observed. Strong surface area reduction occurs by Ca-PZT crystallization at about 700 degreesC, and demonstrated high sinterability (2.40 m(2)/g - 350 nm) with apparent densities near to 99.9%. Different processing methods did not demonstrate superior results. Studies of calcined powder shows a high sinterability of powder calcined 3 h at 700 degrees C and sintered 3 h at 1000 degreesC coming up to 99.8% of relative density. (C) 2001 Kluwer Academic Publishers.
Resumo:
We examined the effects of simulated folivory by caterpillars on photosynthetic parameters and nitrogen (N) resorption efficiency in Quercus pyrenaica saplings. We analyzed the differences between intact leaves in control plants, punched leaves in damaged plants, and intact leaves in damaged plants. We then established two levels of simulated folivory: low (approximate to 13% of the leaf area of one main branch removed per plant) and high (approximate to 26% of the leaf area of one main branch removed per plant) treatments. No differences were found in net assimilation rate and conductance between either leaf type or treatment during the most favourable period for photosynthesis. However, the N content was lower in punched than in intact leaves, and as a result PNUE was higher in damaged leaves from treated trees. In leaf-litter samples, N mass was significantly higher in punched than in intact leaves in treated plants, and LMA was significantly higher in damaged than in intact leaves of both the treated and control plants. Consequently, N resorption efficiency was around 15% lower in damaged leaves as compared with intact leaves from treated and control plants. Mechanical injury to leaves not only triggered no compensatory photosynthetic response to compensate a lower carbon uptake due to leaf area loss, but also affected the resorption process that characterizes leaf senescence.
Resumo:
With the objective of evaluating the effect of different substrates combined with fertilizers in the growth of micropropagated seedlings of Cavendish banana (Musa spp. AAA), ail experiment was conducted in a randomized block design, in a 5 x 3 factorial scheme, with four repetitions. The substrates used were: S1 - subsoil land + carbonized rice hull + Rendmax Floreira (R); S2 - subsoil land + carbonized rice hull + Organifol (R); S3 - subsoil land + carbonized rice hull + Organifol (R) 9% SiO; S4 - Technes Vivatto (R); S5 - thick sand + carbonized rice hull + Rendmax Floreira (R). The fertilizer sources were: SA - without fertilizer; LL - slow-release fertilizer - Osmocote (R) 3M 14-14-14 (5.0 kg m(-3)) inixed in the substrate; and LN - normal-release fertilizer, 14-14-14 (7.5 g seedling(-1)) applied in covering. The height, collar diameter, leaf number, leaf area and dry matter were determined. Based on the differences of growth, substrates S 1, S2, S3 and S4 can be used with fertilizer 14-14-14, with slow (5.0 kg m(-3)) or normal (7.5 g seedling(-1)) release of nutrients.
Resumo:
SrBi2(Ta0.5Nb0.48W0.02)(2)O-9 powders (SBTN-W) were prepared by the polymeric precursor method. The influence of annealing temperature on the phase formation and specific surface area was evaluated. TG/DTA associated with X-ray diffraction (XRD) analyses showed the formation of perovskite phase at around 500-600 degrees C. An orthorhombic structure with A21am space group was identified by Rietveld refinement. BET analysis revealed that the specific surface area reduces with increasing thermal annealing. SEM micrographies showed grains in an almost-spherical morphology with the presence of agglomerates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
P>In developing countries such as Brazil, where canine rabies is still a considerable problem, samples from wildlife species are infrequently collected and submitted for screening for rabies. A collaborative study was established involving environmental biologists and veterinarians for rabies epidemiological research in a specific ecological area located at the São Paulo State, Brazil. The wild animals' brains are required to be collected without skull damage because the skull's measurements are important in the identification of the captured animal species. For this purpose, samples from bats and small mammals were collected using an aspiration method by inserting a plastic pipette into the brain through the magnum foramen. While there is a progressive increase in the use of the plastic pipette technique in various studies undertaken, it is also appreciated that this method could foster collaborative research between wildlife scientists and rabies epidemiologists thus improving rabies surveillance.
Resumo:
Regarding tropical forage plants, the specie Brachiaria ruziziensis are prominence for to be most acceptable for cattle when compared with others Brachiaria species, besides the excellent competitive ability with weeds. Then, this study aimed to evaluate the effects of Brachiaria ruziziensis density in intercropping with corn crop, about weeds control and weeds development in the crop-cattle integration system. The experiment was realized during the period between December/2007 to May/2008, in the experimental area of Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba - SP. The treatment was composed in a factorial arrangement, by combination of four Brachiaria ruziziensis density (0, 10, 15 and 20 kg ha(-1)) and three weed species ((Ipomoea grandifolia, Digitaria horizontalis e Cenchrus echinatus), in intercropping with corn crop. The evaluations realized were: weed infestation (density m(-2)), the dry biomass (g plant(-1)) and leaf area (cm(2) plant(-1)). It was noted that Brachiaria ruziziensis reduced the all of weeds infestation evaluated. Also, it was checked that Digitaria horizontalis and Ipomoea grandifolia were the weeds with most difficult control.
Resumo:
The objective was to evaluate the leaf area index of six different grasses. The experiment was installed at the Instituto Federal de Tecnologia e Educacao of Uberaba, using a randomized block design with split plots in time. The plots were sown: Brachiaria decumbens cv. Basilisk, Brachiaria brizantha cv. Marandu, Panicum maximum cv. Mombasa, Panicum maximum cv. Tanzania, Brachiaria brizantha cv. Xaraes, Cynodon dactylon hb. Tifton and the plots, ten seasons of evaluation in 10 x 6 factorial arrangement with four replications. Rates of leaf area of each forage at different times of year were evaluated. Compared to other forage species, Panicum maximum had a higher leaf area index when subjected to periodic fertilization and irrigation. Only in the late fall Brachiaria Xaraes IAF had increased, but did not differ significantly from the others.
Resumo:
Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels.
Resumo:
Feeding preference of adults of Metriona elatior Klug (Coleoptera: Chrysomelidae, Cassidinae) for different hybrids of Solanum melogena Linnaeus (Solanaceae). Metriona elatior Klug is a potential biocontrol agent for Solanum viarum Dunal (tropical soda apple), because larvae and adults feed on its leaves and this species shows a low dispersion rate. Specificity plays a major role in the feasibility of an organism as a biological control agent, especially in the inundative strategy. The feeding preference of M. elatior adults was evaluated to 14 eggplant (Solanum melogena Linnaeus) hybrids. Mass rearing was carried out under lab conditions, with the insect feeding directly on S. viarum leaves. The study started with dual and multiple choice tests in 24 and 48 hour feeding times, by offering leaf disks in Petri dish conditions. Survival and leaf consumption analysis were performed in newly adults in tropical soda apple and eggplant leaves kept turgid by immersing the petioles in water. The leaf area was measured before and after four days of insect exposure. M. elatior showed higher feeding preference, survival and consumption of the weed species, especially in comparison with the hybrid Ryoma. The highest feeding preference among the eggplant hybrids was observed in 'Minikuro Kowishiki'.
Resumo:
The crytallite and pore-size evolution during isothermal sintering (400 ≤ T ≤ 700°C) of SnO2 xerogels was studied by X-ray line broadening and nitrogen adsorption-desorption isotherms. The experimental results show a strong anisotropy of crystallite growth between [110] and [101] directions. The preferential growth at [101] is followed by an increase in the mean pore size, reduction of the specific surface area and invariance of total pore volume. This behaviour is typical of grain coalescence sintering. The kinetic analysis of experimental results suggests that the crystallite coalescence at [101] is governed by lattice diffusion. The strong anisotropy of the growth causes pore-size distribution broadening, hindering the macroscopic shrinkage of the compact during sintering. © 1996 Chapman & Hall.