264 resultados para reactive oxygen glow


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be correlated to its potent antioxidant capacity. Novel maghemite (gamma-Fe3O4) nanoparticles, characterized by a diameter of about 10 nm and possessing peculiar colloidal properties and surface interactions, called Surface Active Maghemite Nanoparticles (SAMN), were superficially modified with curcumin by simple incubation, due to the presence of under-coordinated Fe(III) atoms on nanoparticle surface. The resulting curcumin-modified SAMNs (SAMN@curcumin) were characterized by transmission electron microscopy (TEM), FTIR, Mossbauer, EPR and UV-Vis spectroscopy. The redox properties of bound curcumin were tested by electrochemistry. Finally, SAMN@curcumin was studied in the presence of different electroactive substances, namely hydroquinone, NADH and ferrocyanide, in order to assess its electrochemical behavior. Moreover, SAMN@curcumin was electrochemically tested in the presence of one of the most diffuse reactive oxygen specie, such as hydrogen peroxide, demonstrating its stability. SAMN@curcumin in which curcumin is firmly bound, but still retaining its redox features represents a feasible adduct: a magnetically drivable nano-bio-conjugate mimicking free Curcumin redox behavior. The proposed nanostructured material could be exploited as magnetic drivable curcumin vehicle for biomedical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When calcinine (A-23187) (2 mu M), a known Ca2+ ionophore, is present, a significant protection is observed to a mitochondrial suspension undergoing lipid peroxidation by Fe2+-citrate complex. A-23187 can remove Ca2+, which seems to have an important role in the lipid peroxidation process, from its 'lesive sites' and consequently preventing the damage. This information has importance in terms of knowing the mechanisms and avoiding the damages of lipid peroxidation that occur in some pathological cases such as tumor promotion and hemochromatosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apocynin is widely used as an inhibitor of the NADPH oxidase. Since myeloperoxidase (MPO) has been considered as essential for the mechanism of action of apocynin, here we used cells with different levels of MPO and compared their sensitivity to apocynin. HL-60 cells were differentiated with DMSO or IFN γ /TNF α and compared with peripheral mononuclear (PBMC) and polymorphonuclear cells (PMN). The relative MPO activity was PBMC = HL60 DMSO < HL60 IFN γ < PMN. Apocynin inhibited the intracellular reactive oxygen species production by PMN (80%) and IFN γ /TNF α -differentiated HL-60 cells (45%) but showed a minor effect in PBMC and DMSO differentiated HL-60 cells (20%). The addition of azide decreased the efficiency of apocynin in PMN and the addition of peroxidase increased the inhibition in PBMC. We also determined the gene expression of the components gp91phox, p47phox, p22phox and p67phox in the resting cells. Apocynin did not change gp91phox, p47phox or p22phox gene expression in nonstimulated PBMC, HL60 DMSO, HL60 IFN γ /TNF α , and PMN and has a subtle increase in p67phox in HL60 IFN γ /TNF α . The results from this work suggest that a rational search for better inhibitors of NADPH oxidase in leukocytes should include a correlation with their affinity as substrates for MPO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While methods to evaluate antioxidant capacity in animals exist, one problem with the models is induction of oxidative stress. It is necessary to promote a great enough challenge to induce measurable alterations to oxidative parameters while ensuring the protocol is compatible with animal welfare. The aim of the present study was to evaluate caged transport as a viable short-term stress that would significantly affect oxidative parameters. Twenty adult Beagle dogs, maintained on the same diet for 60 d prior to the transport, were included in the study. To simulate the stress, the dogs were housed in pairs in transport cages (1·0 m × 1·0 m × 1·5 m), placed on a truck coupled to a trailer and transported for a period of 15 min. Blood collection was performed immediately before and again 3 h after the transportation to evaluate oxidative parameters in blood serum, including thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), sequestration activity of the radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), protein carbonylation (PC), total sulfhydryl groups (SH), alpha-tocopherol (αToc) and retinol (Ret). PC, SH and αToc were not significantly changed in the study; however, TBARS, TAC and DPPH increased, whereas Ret decreased after the transport. Although the lack of a control group of dogs not submitted to transport is a limitation to be considered, we conclude that the transport model is effective in inducing an antioxidant response in dogs and relevant blood parameters show sensitivity to this proposed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are reactive molecules containing oxygen, that form as byproducts of aerobic metabolism, including immune system processes. Too much ROS may cause oxidative stress. In this study, we examined whether it can also limit the production of immune system compounds. To assess the relationship between antioxidant status and immunity we evaluated the effect of dietary supplementation with organic selenium, given at various levels for 10 days, on the antioxidant and immune system of the pacu fish (Piaractus mesopotamicus). Fish fed a diet containing 0.6 mg Se-yeast kg(-1) showed significant improvement in antioxidant status, as well as in hematological and immunological profiles. Specifically, they had the highest counts for catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), red blood cells, and thrombocytes; the highest leukocyte count (particularly for monocytes); and the highest serum lysozyme activity. There was also a positive correlation between GPx and lysozyme in this group of fish. These findings indicate that short-term supplementation with 0.6 mg Se-yeast kg(-1) reestablished the antioxidative status, allowing the production of innate components which can boost immunity without the risk of oxidative stress. This study shows a relationship between oxidative stress and immunity, and, from a practical perspective, shows that improving immunity and health in pacu through the administration of selenium could improve their growth performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fipronil is an insecticide extensively used to control pests in crops and animals. There are relates of poisoning due to exposure of fipronil in mammals and the liver has been suggested as potential target. In this study, we evaluated the effects of fipronil and its metabolites sulfone and desulfinyl on the bioenergetics, reactive oxygen species (ROS) production and calcium efflux from mitochondria isolated from rat liver. Fipronil (5-25 μM) inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. Fipronil also caused uncoupling in succinate-energized mitochondria and calcium efflux. The metabolites sulfone and desulfinyl also acted as mitochondrial inhibitors and uncouplers and caused calcium efflux, but with different potencies, being the sulfone the more potent one. These effects of fipronil and its metabolites on mitochondrial bioenergetics and calcium homeostasis may be related to toxic effects of the insecticide in the liver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)