460 resultados para bovine placenta
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rangel P. & Marin J.M. 2009. Analysis of Escherichia coli isolated from bovine mastitic milk. Pesquisa Veterinaria Brasileira 29(5): 363-368. Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirao Preto, Universidade de São Paulo, Avenida do Cafe s/n, Campus USP, Ribeirao Preto, SP 14040-904, Brazil. E-mail: jmmarin@forp.usp.brMastitis has been recognized for some time as the most costly disease in dairy herds. From February to November 2004, 670 samples of bovine mastitic milk from which 231 Escherichia coli strains were isolated, were collected from two Brazilian states. The strains were screened for the presence of Shiga toxin-producing (stx 1 and stx 2) and intimin (eae) genes. Twenty (8.6%) strains were detected by PCR to harbor the Shiga toxin genes (8 the stx 1 gene, 12 the stx 2 gene and none both of them). Two (0.8%) of the Escherichia coli strains studied were eae positive non Shiga toxin-producing. The strains were also examined for resistance to 12 antimicrobial agents. The predominantly observed resistance was to tetracycline (92.2%), streptomycin (90.4%), nalidixic acid (88.3%), amikacin (86.5%) and cephalothin (84.8%). Multidrug resistance was found among 152 isolates (65.8%).
Resumo:
Aim To evaluate the soft tissue and the dimensional changes of the alveolar bony crest at sites where deproteinized bovine bone mineral (DBBM) particles, concomitantly with the placement of a collagen membrane, were used at implants installed into sockets immediately after tooth extraction. Material and methods The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs, and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned, and the distal roots removed. Recipient sites were prepared in the distal alveolus, and implants were placed. At the test sites, DBBM particles were placed in the residual marginal defects concomitantly with the placement of a collagen membrane. No treatment augmentation was performed at the control sites. A non-submerged healing was allowed. Impressions were obtained at baseline and at the time of sacrifice performed 4 months after surgery. The cast models obtained were analyzed using an optical system to evaluate dimensional variations. Block sections of the implant sites were obtained for histological processing and soft tissue assessments. Results After 4 months of healing, no differences in soft tissue dimensions were found between the test and control sites based on the histological assessments. The location of the soft tissue at the buccal aspect was, however, more coronal at the test compared with the control sites (1.8 +/- 0.8 and 0.9 +/- 0.8 mm, respectively). At the three-dimensional evaluation, the margin of the soft tissues at the buccal aspect appeared to be located more apically and lingually. The vertical dislocation was 1 +/- 0.6 and 2.7 +/- 0.5 mm at the test and control sites, respectively. The area of the buccal shrinkage of the alveolar crest was significantly smaller at the test sites (5.9 +/- 2.4 mm2) compared with the control sites (11.5 +/- 1.7 mm2). Conclusion The use of DBBM particles concomitantly with the application of a collagen membrane used at implants placed into sockets immediately after tooth extraction contributed to the preservation of the alveolar process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)