278 resultados para Zirconia ceramics
Resumo:
The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
A cerium-carrying solution was developed so as to aprtially fill the open porosity of Al2O3/SiC/C/MgAl2O4 based refractory lining microstructure used in torpedo ladles, thereby enhancing wear resistance. The protection mchanism was cleared up and introduced from the impregnation technique using a cerium-carrying solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New Yb3+, Er3+ and Tm3+ doped fluoro-phosphate glasses belonging to the system NaPO3–YF3–BaF2–CaF2 and containing up to 10 wt% of rare-earth ion fluorides were prepared and characterized by differential scanning calorimetry, absorption spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and homogeneous glass-ceramics have been reproducibly obtained with a view to manage the red, green and blue emission bands and generate white light. X-ray diffraction as well as electron microscopy techniques have confirmed the formation of fluorite-type cubic nanocrystals at the beginning of the crystallization process while complex nanocrystalline phases are formed after a longer heat-treatment. The prepared glass-ceramics exhibit high optical transparency even after 170 h of thermal treatment. An improvement of up-conversion emission intensity – from 10 to 160 times larger – was measured in the glass-ceramics when compared to the parent glass, suggesting an important incorporation of the rare-earth ions into the crystalline phase(s). The involved mechanisms and lifetime were described in detail as a function of heat-treatment time. Finally, a large range of designable color rendering (from orange to turquoise through white) can be observed in these materials by controlling the laser excitation power and the crystallization rate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrical response of Ba(Ti0.90Zr0.10)O3 (BZT) ceramics obtained by the mixed oxide method as a functionof tungsten content was investigated. According to X-ray diffraction analysis the single phase BZT1W (1wt.% W doped BZT) and BZT2W (2 wt.% W doped BZT) ceramics, crystallized in a perovskite structure, wereobtained. It is also shown that tungsten substituted ceramics can be sintered at a reduced temperature whencompared to the undoped BZT. Electron paramagnetic resonance (EPR) analyses reveals that substitution ofTi4+ by W6+ causes distortion in the crystal structure changing lattice parameter. Substitution of W6+ on B-siteof ABO3 perovskite BZT ceramics shifted the phase transition to lower temperatures up to a tungsten contentof 2 wt.% leading to a relaxor-like behaviour.Keywords: donor dopant; ceramics; dielectric response; mixed oxide method
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Crowns made from an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) core with a porcelain veneer have shown high clinical failure rates. Manifestations of clinical failure in veneering ceramic ranges from a single chip to an extended fracture. Core failures are uncommon but usually are catastrophic. This article examines the possible causes of failure in zirconia systems and presents a case report involving the diagnosis and repair of three different types of failure in six 3Y-TZP/porcelain crowns.
Resumo:
The purpose of this in vitro study was to evaluate the effect of air-abrasion/zirconia sintering order on the yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) surface characterization (roughness, morphology, and phase transformation), flexural strength (FS), and shear bond strength (SBS) to a resin cement. Y-TZP specimens were air abraded with 50-μm Al2O3 particles after (AS), before (BS), or before and after zirconia sintering (BAS). For roughness (Ra), 30 block specimens (12×12×3.0 mm; n=10) had their surfaces analyzed by a profilometer. Next, on the air-abraded surfaces of these specimens, composite resin discs (n=30) were bonded with RelyX ARC. The bonded specimens were stored for 24 hours in distilled water at 37°C before shear testing. Failure mode was determined with a stereomicroscope (20×). The surface morphology (n=2) was evaluated by SEM (500×). For the four-point flexural strength test (EMIC DL2000), 39 bar-shaped specimens (20×4.0×1.2 mm; n=13) were air abraded according to the three conditions proposed, and an additional group (nonabraded) was evaluated (n=13). The quantitative analysis of phase transformation (n=1) was completed with Rietveld refinement with X-ray diffraction data. Ra (μm) and SBS (MPa) data were analyzed by one-way analysis of variance (ANOVA) and the Tukey test (α=0.05). Pearson correlation analysis was used to determine if there was a correlation between roughness and SBS. For FS (MPa) data, one-way ANOVA and the Dunnett C-test (α=0.05) were used. The air-abrasion/zirconia sintering order influenced significantly (p<0.001) Ra, SBS, and FS. The BS and AS groups presented the highest (1.3 μm) and the lowest (0.7 μm) Ra. The highest SBS (7.0 MPa) was exhibited by the BAS group, followed by the AS group (5.4 MPa) and finally by the BS group (2.6 MPa). All groups presented 100% adhesive failure. A weak correlation (r=−0.45, p<0.05) was found between roughness and SBS. The air-abrasion/zirconia sintering order provided differences in the surface morphology. The nonabraded (926.8 MPa) and BS (816.3 MPa) groups exhibited statistically similar FS values but lower values than the AS (1249.1 MPa) and BAS (1181.4 MPa) groups, with no significant difference between them. The nonabraded, AS, BS, and BAS groups exhibited, respectively, percentages of monoclinic phase of 0.0 wt%, 12.2 wt%, 0.0 wt%, and 8.6 wt%. The rougher surface provided by the air-abrasion before zirconia sintering may have impaired the bonding with the resin cement. The morphological patterns were consistent with the surface roughness. Considering the short-term SBS and FS, the BAS group exhibited the best performance. Air abrasion, regardless of its performance order, provides tetragonal to monoclinic transformation, while sintering tends to zero the monoclinic phase content.
Resumo:
Statement of problem Because airborne-particle abrasion is an efficient method of improving the bond at the zirconia-cement interface, understanding its effect on the strength of yttria-stabilized tetragonal zirconia polycrystal is important. Purpose The purpose of this study was to evaluate the effect of the particle size used for airborne-particle abrasion on the flexural strength and phase transformation of a commercially available yttria-stabilized tetragonal zirconia polycrystal ceramic. Material and Methods For both flexural strength (20.0 × 4.0 × 1.2 mm) (n=14) and phase transformation (14.0-mm diameter × 1.3-mm thickness) (n=4), the zirconia specimens were made from Lava, and their surfaces were treated in the following ways: as-sintered (control); with 50-μm aluminum oxide (Al2O3) particles; with 120-μm Al2O3 particles; with 250-μm Al2O3 particles; with 30-μm silica-modified Al2O3 particles (Cojet Sand); with 120-μm Al2O3 particles, followed by 110-μm silica-modified Al2O3 particles (Rocatec Plus); and with Rocatec Plus. The phase transformation (%) was assessed by x-ray diffraction analysis. The 3-point flexural strength test was conducted in artificial saliva at 37°C in a mechanical testing machine. The data were analyzed by 1-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). Results Except for the Cojet Sand group, which exhibited statistically similar flexural strength to that of the as-sintered group and for the group abraded with 250-μm Al2O3 particles, which presented the lowest strength, airborne-particle abrasion with the other particle sizes provided the highest values, with no significant difference among them. The as-sintered specimens presented no monoclinic phase. The groups abraded with smaller particles (30 μm and 50 μm) and those treated with the larger ones (110 μm and/or 120 μm particles and 250 μm) exhibited percentages of monoclinic phase that varied from 4% to 5% and from 8.7% to 10%. Conclusions Except for abrasion with Cojet Sand, depending on the particle size, zirconia exhibited an increase or a decrease in its flexural strength. Airborne-particle abrasion promoted phase transformation (tetragonal to monoclinic), and the percentage of monoclinic phase varied according to the particle size.
Surface roughness analysis of dental ceramics treated with hydrofl uoric acid and aluminum oxide jet
Resumo:
The aim of this study was to evaluate the surface roughness of 5 indirect restorative materials treated with hydrofluoric acid to 10%, with aluminum oxide jet and a combination of both. The specimens was prepared with 10 mm in diameter and 2 mm thickness, divided into fi ve groups: (1) Ceromer (CeseadII-Kuraray), (2) Leucite crystals ceramics (IPS EmpressIIIvoclarforcasket), (3) glass ceramic with fluorapatite (IPS D. Sign-Ivoclar), (4) lithium disilicate ceramic (IPS Empress II-Ivoclar restorations), (5) ceramics (Cergogold-Degussa). For all groups were performed the controls, and the surfaces with the 3 types of treatment. For testing roughness used the rugosimeter Taylor/Hobson-Precision, model form tracerSV-C525 high sensitivity. After confi rmation of variance analysis with a signifi cance level of 1% (p < 0.01), there was equality between the average roughness of materials from groups 1, 3 and 5, and the group 2 was different from the others. It was also found that the ceramics of the group 5 behaved similar to group 4. However the lowest average roughness was observed in group 2 ceramic. In the evaluation between the types of treatment, the aluminum oxide jet and associations and blasting with hydrofl uoric acid were similar, and different isolated hydrofl uoric acid, and 3 types of treatment signifi cantly higher than the control group. All treatments promoted superfi cial alterations in all tested materials.
Resumo:
The reestablishment of a harmonious smile through dental ceramics, when properly conducted and with specific indications, can achieve extremely predictable results. For aesthetic and functional rehabilitation, many ceramic materials can be used such as zirconia, leucite, alumina, feldspar, and lithium disilicate. Among these materials the lithium disilicate stands out due to the following characteristics: its resistance to wear, to chemical attack, high temperatures and oxidation; low electrical conductivity; near zero thermal expansion; good optical properties and biocompatibility with periodontal; excellent esthetics; color stability and reinforcement of tooth structure. The indications for the use of lithium disilicate are not limited to multiple facets of teeth in cases where there was no favorable response to tooth whitening, and also comprehend teeth with multiple restorations, diastema closure, shape alteration, and dental contouring, replacement of missing or fractured teeth, among others. The versatility of lithium disilicate ceramics allows its utilization in several clinical situations. The concomitant use of lithium disilicate for veneers and over metal has satisfactory aesthetic results, as reported in the present studying cases that require both aesthetics and resistance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)