337 resultados para Freezing semen
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The AC electric field and temperature dependences of the dielectric permittivity for strontium barium niobate (Sr(0.75)Ba(0.25)Nb(2)O(6)) relaxor ferroelectric thin films have been investigated. The results indicate the existence of a true mesoscopic structure evidenced by the nonlinear dielectric response of these films, which is similar to those observed for bulk relaxor ferroelectrics. A tendency for a temperature dependent crossover from a linear to a quadratic behaviour of the dielectric nonlinearity was observed, indicating an evolution from paraelectric to glass-like behaviour on cooling the samples towards the freezing temperature transition.
Resumo:
The ac and dc driving fields dependence of the dielectric permittivity for the strontium barium niobate relaxor ferroelectric thin films has been investigated. The nonlinear dielectric properties were obtained by using the measurements of the dielectric permittivity of the material as a function of the ac and dc "bias" electric field amplitude in wide frequency (100 Hz-10 MHz) and temperature (50-450 K) intervals. The results hint the existence of a true mesoscopic dielectric relaxor response in the ferroelectric thin film, which is very similar to those observed in bulk relaxor ferroelectrics. An anomalous behavior of the NL dielectric response was observed when submitted to moderate dc electric fields levels,,indicating a crossover from paraelectric to a glasslike behavior on cooling the sample toward the freezing transition. The obtained results were analyzed within the framework of the models proposed in the current literature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study aimed to evaluate the correlation between the motile sperm organelle morphology examination (MSOME) and a well-known sperm morphology classification (Tygerberg criteria). For MSOME, spermatozoa were analysed at x8400 magnification by inverted microscope equipped with Nomarski differential interference contrast optics, Uplan Apo x 100 oil/1.35 objective lens and variable zoom lens. By Tygerberg criteria, the semen underwent morphological evaluation as described in the literature. Regression analysis demonstrated significant positive correlation between percentage of normal sperm forms by Tygerberg criteria and by MSOME (r = 0.83, P < 0.0001). However, the incidence of normal spermatozoa by Tygerberg criteria (9.4%) was significantly higher (P < 0.0001) than under MSOME (3.3%). Despite the highly positive correlation, MSOME is a much stricter criterion of sperm morphology classification, since it identifies vacuoles and chromatin abnormalities that are not evaluated with the same precision by the analysis of Tygerberg criteria. MSOME should be included among the routine criteria for semen analysis. In addition, MSOME should be used for selection of spermatozoa for intracytoplasmic sperm injection based on the already published literature, as this is a good selection tool.
Resumo:
The aim of this investigation was to determine the presence of abnormal sperm chromatin packaging in spermatozoa with large nuclear vacuoles (LNV) selected via high magnification by analysing the pattern of chromomycin A3 (CMA3) staining. A prospective observational study was designed to analyse semen samples obtained from 66 men undergoing infertility diagnosis and treatment. The numbers of cells with normal (dull yellow staining of the sperm head/CMA3-negative) and abnormal (bright yellow fluorescence of the sperm head/CMA3-positive) chromatin packaging were determined on slides with normal and LNV spermatozoa. The presence of bright yellow fluorescence (CMA3-positive) was significantly higher (p < 0.0001) in spermatozoa with LNV than in normal spermatozoa (719/1351; 53.2% vs. 337/835; 40.3%, respectively), reflecting a higher percentage of abnormal chromatin packaging in spermatozoa with large LNV. Our data support the hypothesis that the presence of LNV reflects the presence of abnormal chromatin packaging, which may facilitate sperm DNA damage. As sperm nuclear vacuoles are evaluated more precisely at high magnifications using motile sperm organelle morphology examination (MSOME), the present results support the use of high-magnification sperm selection for intracytoplasmic sperm injection (ICSI).
Resumo:
The aim of this study was to determine the extent of DNA fragmentation and the presence of denatured single-stranded or normal double-stranded DNA in spermatozoa with large nuclear vacuoles (LNV) selected by high magnification. Fresh semen samples from 30 patients were prepared by discontinuous isolate concentration gradient. Spermatozoa with normal nucleus (NN) and LNV were selected at x8400 magnification and placed on different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double-stranded DNA was identified by the acridine orange fluorescence method. DNA fragmentation in spermatozoa with LNV (29.1%) was significantly higher (P < 0.001) than in spermatozoa with NN (15.9%). Therefore, cleavage of genomic DNA in low molecular weight DNA fragments (mono- and oligonucleosomes), and single-strand breaks (nicks) in high molecular weight DNA occur more frequently in spermatozoa with LNV. Similarly, the percentage of denatured-stranded DNA in spermatozoa with LNV (67.9%) was significantly higher (P < 0.0001) than in spermatozoa with NN (33.1%). The high level of denatured DNA in spermatozoa with LNV suggests precocious decondensation and disaggregation of sperm chromatin fibres. The results show an association between LNV and DNA damage in spermatozoa, and support the routine morphological selection and injection of motile spermatozoa at high magnification for ICSI.
Resumo:
The aim of this study was to determine the extent of DNA fragmentation and the presence of denatured single-strand or normal double-strand DNA in spermatozoa with extruded nuclear chromatin (ENC) selected by high magnification. Fresh semen samples from 55 patients were prepared by discontinuous isolate concentration gradient. Spermatozoa with normal nucleus (NN) and ENC were selected at 8400x magnification and placed on different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double-stranded DNA was identified by the acridine orange fluorescence method. DNA fragmentation was not significantly different (p = 0.86) between spermatozoa with ENC (19.6%) and those with NN (20%). However, the percentage of spermatozoa with detectable denatured-stranded DNA in the ENC spermatozoon group (59.1%) was significantly higher (p < 0.0001) than in the NN group (44.9%). The high level of denatured DNA in spermatozoa with ENC suggests premature decondensation and disaggregation of sperm chromatin fibres. The results show an association between ENC and DNA damage in spermatozoa, and support the routine morphological selection and injection of motile spermatozoa at high-magnification intracytoplasmic sperm injection.
Resumo:
Birefringence or double refraction is the decomposition of a ray of light into two rays when it passes through an anisotropic material such as quartz. Sperm cells have been demonstrated to be optically anisotropic. The objective of this study was to evaluate the relationship between the pattern of human sperm head birefringence (SHBF) and DNA damage. A total of 26 patients with normal semen were included. DNA damage (fragmentation and denaturation) was evaluated in the sperm head in the context of birefringence, both total (SHBF-T) and partial (SHBF-P), by terminal deoxyribonucleotidyl transferase (TdT)-mediated dUDP nick-end labelling assay and acridine orange fluorescence, respectively. Positive DNA fragmentation in spermatozoa with SHBF-T (205/1053; 19.5%) was significantly higher (P < 0.0001) than in spermatozoa that presented SHBF-P (60/820; 7.3%). However, the percentage of denatured DNA in spermatozoa with SHBF-T (824/1256; 65.6%) was not significantly different from the ones with SHBF-P (666/1009; 66.0%). In conclusion, the data support a positive relationship between spermatozoa with total SHBF in their head and increased DNA fragmentation. (C) 2011, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Although the motile sperm organelle morphology examination (MSOME) was developed only as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in evaluation of semen quality, with potential clinical repercussions. The present study aimed to evaluate individual variations in the motile sperm organelle morphology examination (MSOME) analysis after a time interval.Methods: Two semen samples were obtained from 240 men from an unselected group of couples undergoing infertility investigation and treatment. Mean time interval between the two semen evaluations was 119 +/- 102 days. No clinical or surgical treatment was realized between the two observations. Spermatozoa were analyzed at greater than or equal to 8400 x magnification by inverted microscope equipped with DIC/Nomarski differential interference contrast optics. At least 200 motile spermatozoa per semen sample were evaluated and percentages of normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV/one or more vacuoles occupying >50% of the sperm nuclear area) were determined. A spermatozoon was classified as morphologically normal when it exhibited a normal nucleus (smooth, symmetric and oval nucleus, width 3.28 +/- 0.20 mu m, length 4.75 +/- 0.20 mu m/absence of vacuoles occupying >4% of nuclear area) as well as acrosome, post-acrosomal lamina, neck and tail, besides not presenting cytoplasm around the head. One examiner, blinded to subject identity, performed the entire study.Results: Mean percentages of morphologically normal and LNV spermatozoa were identical in the two MSOME analyses (1.6 +/- 2.2% vs. 1.6 +/- 2.1% P = 0.83 and 25.2 +/- 19.2% vs. 26.1 +/- 19.0% P = 0.31, respectively). Regression analysis between the two samples revealed significant positive correlation for morphologically normal and for LNV spermatozoa (r = 0.57 95% CI: 0.47-0.65 P < 0.0001 and r = 0.50 95% CI: 0.38-0.58 P < 0.0001, respectively).Conclusions: The significant positive correlation and absence of differences between two sperm samples evaluated after a time interval with respect to normal morphology and LNV spermatozoa indicated that MSOME seems reliable (at least for these two specific sperm forms) for analyzing semen. The present result supports the future use of MSOME as a routine method for semen analysis.
Resumo:
Background: The purpose of this study was to compare laboratory and clinical outcomes of intracytoplasmic morphologically selected sperm injection (IMSI) and conventional intracytoplasmic sperm injection (ICSI) in couples with repeated implantation failures.Methods: A total of 200 couples with at least two prior unsuccessful ICSI cycles were enrolled: 100 couples were submitted to IMSI and 100 were submitted to routine ICSI. For IMSI, spermatozoa were selected at 8400x magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. For conventional ICSI, spermatozoa were selected at 400x magnification. Clinical outcomes were evaluated between the two groups.Results: Study patients were comparable in age, number of treatment failures, aetiology of infertility, percentage of normal form assessed by MSOME (motile sperm organelle morphology examination), semen parameters, total number of oocytes collected, number of mature oocytes collected, total number of embryos transferred and number of high-quality embryos transferred. No statistically significant differences between the two groups were observed with regard to rates of fertilisation, implantation and pregnancy/cycle. Although not statistically significant, rates of miscarriage (IMSI:15.3% vs ICSI:31.7%), ongoing pregnancy (IMSI:22% vs ICSI:13%) and live births (IMSI:21% vs ICSI:12%) showed a trend towards better outcomes in the IMSI group. In addition, analysis of subpopulations with or without male factor showed similar results.Conclusions: Our results suggest that IMSI does not provide a significant improvement in clinical outcome compared to ICSI, at least in couples with repeated implantation failures after conventional ICSI. However, it should be noted that there were clear trends for lower miscarriage rates (approximate to 50% reduced) and higher rates of ongoing pregnancy and live births (both nearly doubled) within the IMSI group. Further confirmation as well as randomized large-scale trials are needed to confirm the beneficial effects of IMSI in couples with poor reproductive prognoses.
Resumo:
Background: Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI).Methods: A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400x magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined.Results: Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%.Conclusions: The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI.
Resumo:
Background: This study aimed to investigate the influence of age on sperm quality, as analysed by motile sperm organelle morphology examination (MSOME).Methods: Semen samples were collected from 975 men undergoing evaluation or treatment for infertility. Sperm cells were evaluated at 8400x magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. Two forms of spermatozoa were considered: normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV, defined as vacuoles occupying > 50% of the sperm nuclear area). At least 200 spermatozoa per sample were evaluated, and the percentages of normal and LNV spermatozoa were determined. The subjects were divided into three groups according to age: Group I, less than or equal to 35 years; Group II, 36-40 years; and Group III, greater than or equal to 41 years.Results: There was no difference in the percentages of normal sperm between the two younger (I and II) groups (P > 0.05). The percentage of normal sperm in the older group (III) was significantly lower than that in the younger (I and II) groups (P < 0.05). There was no difference in the percentage of LNV spermatozoa between the younger (I and II) groups (P > 0.05). The percentage of LNV spermatozoa was significantly higher in the older group (III) than in the younger (I and II) groups (P < 0.05). Regression analysis demonstrated a significant decrease in the incidence of normal sperm with increasing age (P < 0.05; r = -0.10). However, there was a significant positive correlation between the percentage of spermatozoa with LNV and male age (P < 0.05, r = 0.10).Conclusion: The results demonstrated a consistent decline in semen quality, as reflected by morphological evaluation by MSOME, with increased age. Considering the relationship between nuclear vacuoles and DNA damage, these age-related changes predict that increased paternal age should be associated with unsuccessful or abnormal pregnancy as a consequence of fertilisation with damaged spermatozoa. Given that sperm nuclear vacuoles can be evaluated more precisely at high magnification, these results support the routine use of MSOME for ICSI as a criterion for semen analysis.
Resumo:
Background: It is not well established whether the increased number of leukocytes in the seminal fluid impairs the outcomes of assisted reproductive technology (ART). This investigation analysed the outcomes of the intracytoplasmic sperm injection (ICSI) and intracytoplasmic morphologically selected sperm injection (IMSI) cycles in couples in which the male partner exhibited leukocytospermia.Methods: A total of 100 cycles in 100 couples were included in this study. For the ICSI or IMSI procedures, the patients were divided into two groups according to the presence or absence of leukocytospermia and then matched by (female) age:- ICSI: Group I (n = 25): Leukocytospermia - semen samples with a leukocyte count of greater than or equal to 1 x 10(6)/mL; and Group II (n = 25): Non-leukocytospermia - semen samples with a leukocyte count < 1 x 10(6)/mL.- IMSI: Group I (n = 25): Leukocytospermia; and Group II (n = 25): Non-leukocytospermia.The endpoints included the rates of fertilisation, implantation, clinical pregnancy, miscarriage, ongoing pregnancy and live birth. Student's t-tests, Mann-Whitney tests and Chi-square tests were performed, and P < 0.05 was considered significant.Results: The data from the ICSI groups showed that leukocytospermia did not have a negative influence on the rates of fertilisation (Group I: 57.9+/-30.2%, Group II: 61.9+/-27.7%; P = 0.74), implantation (Group I: 12.3%; Group II: 13.5%; P = 0.93), clinical pregnancy (Group I: 24%; Group II: 24%; P = 1.0), miscarriage ( Group I: 0, Group II: 0), ongoing pregnancy (Group I: 24%; Group II: 24%; P = 1.0), or live births (Group I: 24%; Group II: 24%; P = 1.0). Similarly, the data from the IMSI groups also showed that the leukocytospermia did not have a negative influence on the rates of fertilisation (Group I: 67.6+/-24.6%, Group II: 59.5+/-28.1%; P = 0.36), implantation (Group I: 17.5%; Group II: 16.7%; P = 0.90), clinical pregnancy (Group I: 28%; Group II: 24%; P = 1.0), miscarriage (Group I: 14.3%; Group II: 0; P = 0.33), ongoing pregnancy (Group I: 24%; Group II: 24%; P = 1.0), or live births (Group I: 24%, 6/25; Group II: 24%, 6/25; P = 1.0).Conclusions: The results indicate that the leukocytospermia may not have a negative effect on the outcomes of ICSI or IMSI cycles. Nevertheless, it seems that it is necessary to more precisely determine the effects, if any, of seminal leukocytes on fertilisation and implantation processes. Such efforts will help to establish a more reliable leukocyte threshold, which could eventually demonstrate whether there is a negative influence on the ART procedures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)