290 resultados para Espectroscopia de emissão óptica
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Soil tillage is one of the agricultural practices that may contribute to increase the loss of carbon through emission of CO2 (FCO2). The aim of this study was to investigate the effect of three soil tillage systems on FCO2, soil temperature and soil moisture in a sugarcane area under reform. The experimental area consisted of three tillage plots: conventional tillage (CT), conventional subsoiling (CS), and localized subsoiling (LS). FCO2, soil temperature and soil moisture were measured over a period of 17 days. FCO2 showed the highest value in CT (0.75 g CO2 m(-2) h(-1)). Soil temperature presented no significant difference (p > 0.05) between LS (26.2 degrees C) and CS (25.9 degrees C). Soil moisture was higher in LS (24%), followed by CS (21.8%) and CT (18.3%). A significant correlation (r = -0.71; p < 0.05) between FCO2 and soil temperature was observed only in CT. The conventional tillage presented a total emission (2,864.3 kg CO2 ha(-1)) higher than the emissions observed in CS (1,970.9 kg CO2 ha(-1)) and LS (1,707.7 kg CO2 ha(-1)). The conversion from CT to LS decreased soil CO2 emissions, reducing the contribution of agriculture in increasing the concentration of greenhouse gases in the atmosphere.
Resumo:
Despite the great development of organic and polymeric electroluminescent materials, the large scale commercial application of devices made with these materials seems conditioned to specific cases, mainly due to the high cost and the low durability, in compared to conventional technologies. In this study was produced electroluminescent devices by a process simple, drop casting. Were produced electroluminescent films containing Zn2SiO4:Mn immersed in a conductive polymer blend with different thicknesses. The morphological characteristics of these films were studied by scanning electronic microscopy. These films were used in the manufacture of electroluminescent devices, in which the light emission properties of the developed material were evaluated. The blend was composed of the conductive polymer Poly(o-methoxyaniline), doped with p-toluene sulfonic acid, and an insulating polymer, Poly(vinylidene fluoride) and its copolymer Poly(vinylidene fluoride-cotrifluoroethylene). To this blend was added Zn2SiO4:Mn, thereby forming the composite. A first set of devices was obtained using composites with different weight fraction of polymeric and inorganic phases, which were deposited by drop casting over ITO substrates. Upper electrodes of aluminum were deposited by thermal evaporation. The resulting device architecture was a sandwich type structure ITO/ composite/ Al. A second set of devices was obtained as self-sustaining films using the best composite composition obtained for the device of the first set. ITO electrodes were deposited by RF-Sputtering, in both faces of these films. The AC electrical characterization of the devices was made with impedance spectroscopy measurements, and the DC electrical characterization was performed using a source/ meter unit Keithley 2410. The devices light emission was measured using a photodiode coupled to a digital electrometer, Keithley 6517A. The devices electrooptical characterization showed that the...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Eletronicalceramics are used in many applications such as: multilayer capacitor, transducer, pyroelectric sensors and electrooptic devices. In recent years there has been a growing demand for eletronicalceramics with better performance and functionality. This demand has accelerated the development of synthesis techniques to produce powders with well-defined particle size, shape and crystallinity. The eletronicalceramics in the form of bulk are determined by their performance characteristics of the powders used and the preparation process. So, physical and chemical properties of powders, such as chemical control of stoichiometry, purity, homogeneity, particle size and shape should be observed when choosing the methods of synthesis. Among the techniques used so far, the polymeric precursor method, also known as Pechini, has been considered ideal for the preparation of nanosized powders. Thus, this research project aims to use the polymeric precursor method to prepare powders of lithium tantalate and lanthanum tantalate, with good chemical stability. In this aspect is proposed to investigate the effects of variation of the concentration of europium about the properties of tantalate because doping with Eu3 + indicates that they may occupy different sites in the crystal structure, as in the case of LiTaO3. Effects of things like occupation sites, stability of phases and formation temperature have been previously investigated by the group, which motivated the formulation of this project. Our proposal aims to introduce the Eu3 + LaTaO4 and LiTaO3 and study the structural and optical properties of the powders obtained by Pechini method, as well as correlate these studies with the electrical properties of the material, mainly the Ironelectricty Hysteresis.