614 resultados para Enamel Microhardness
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: The aim of this study was to evaluate the anticaries effect of low-fluoride toothpastes combined with hexametaphosphate (HMP) on enamel demineralization.Methods: Bovine enamel blocks were subjected to pH cycling and treatment with toothpaste's slurries (15 groups; 2x/day). Toothpaste mixtures contained the following: no fluoride (F) plus HMP (from 0 to 3.0%); 250 ppm F plus HMP (from 0 to 3.0%); 500 ppm F; 1100 ppm F; and a commercial toothpaste (1100 ppm F). After pH cycling, surface and cross-sectional hardness, as well as F present in the enamel were determined. The demineralization depth was analyzed using polarized light microscopy. The variables were subjected to 1-way ANOVA, followed by Student-Newman-Keuls' test (p < 0.05).Results: In the absence of fluoride, 0.5% HMP promoted the lowest mineral loss and its effect was similar to that of a 250 ppm F toothpaste (p > 0.05). The combination of 0.5% HMP and 250 ppm F resulted in lower mineral loss (p < 0.05) and similar lesion depth when compared to the 1100 ppm F toothpaste (p > 0.05).Conclusion: To conclude, the combination of 0.5% HMP and 250 ppm fluoride in a toothpaste has a similar inhibitory effect on enamel demineralization in vitro when compared to a toothpaste containing 1100 ppm F.Clinical significance: The anticaries effect of toothpaste containing 250 ppm F combined with 0.5% HMP was similar to that of a 1100 ppm F toothpaste, despite the 4-fold difference in F concentration. Although such effects still need to be demonstrated in clinical studies, it may be a viable alternative for preschool children. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: This in vitro study aimed to evaluate the effect of bleaching agents on dentin microhardness during and after bleaching. Method and materials: Specimens were randomly assigned to seven groups (n = 15): Nite White Excel 2 Z [NW] 10% and 22%; Rembrandt [REM] 10% and 22%; Opalescence [OPA] 10% and 20%; and a placebo agent. The 42-day whitening treatment consisted of daily application of the agents to the dentin surfaces for 8 hours, followed by immersion in artificial saliva for 16 hours. After the bleaching treatment, specimens were kept immersed in artificial saliva for 14 days. Microhardness was measured at baseline, 8 hours, and 7, 14, 21, 28, 35, and 42 days of bleaching and during the posttreatment period (7 and 14 days). Results: The analysis of variance for split-plot showed a significant effect on the interaction between bleaching agent and time. Tukey's test and regression analyses revealed that during the bleaching period, the agents NW 10%, NW 22%, and OPA 20%, which did not differ from each other, did not alter dentin microhardness, showing constant microhardness values. There were no differences among REM 10%, REM 22%, and OPA 10%, which showed significant reductions in microhardness after day 14 compared to other agents. After bleaching procedures, there was an increase in dentin microhardness for all groups. Conclusion: Throughout the bleaching treatment, depending on the agent applied, dentin showed a transitory decrease in microhardness values. In the posttreatment period, artificial saliva presented a remineralizing effect on the bleached surfaces.
Resumo:
Enamel microabrasion is a non-invasive method that removes intrinsic and superficial defects from teeth aimed to improve dental esthetic with minimal loss of dental tissue. This case presentation describes the attempt for teeth color correction utilizing that conservative technique in a young girl whose upper central incisor presented an opaque white stain. Scanning electron microscopy (SEM) was conducted in order to illustrate the glasslike luster and a smooth texture of microabraded enamel surface. The correct diagnosis of defect is a difficult task, when consider this conservative approach.
Resumo:
The intense valuation of an esthetic pleasant smile guided the dentistry to bleached tooth due the popularity of whitening treatments. The consequence of it is an increasing interest in searching the effect of peroxides in hard dental tissues. The aim of this work was to analyze qualitatively in vitro the human enamel after three different bleaching treatments: Opalescence PF 10%, White Class 7.5% and Opalescence Xtra Boost 38%, correlating the structural changes in the surface of the enamel with its respective pH. A total of 40 sound human pre-molars were randomly divided into four groups of 10 elements, which had been immersed in artificial saliva during all the experiment. Bleaching protocols followed the recommendations of the respective manufacturers. Each bleached sample and control group were submitted to a scanning electronic microscopy analysis and compared with one another. Bleaching agents used in this experiment had modified the morphologic aspect of the surface of the dental enamel; however, it did not have correlation between the degrees of severity of the alterations and pH. There is a correlation between hydrogen peroxide concentration and changes in the enamel, where G4 showed more severe alterations, followed for G3 and G2.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)