267 resultados para Consumerização das TI
Resumo:
In this work, the influence of modifications of the cp-Ti and Ti 6Al 4V alloy, by treating the surface with NaOH and depositing titanium oxide and hydroxyapatite by sol-gel method, on their biocompatibility was studied. The coatings were characterized by scanning electron microscopy and X-ray diffraction which showed that the coatings on Ti 6Al 4V are better than on cp-Ti. Adhesion tests showed that adhesion strength of the coatings on cp-Ti substrate is less than on Ti 6Al 4V as well as cytotoxicity for L929 fibroblast cells is higher
Resumo:
The objective of the present work was to evaluate surface of experimental alloy Ti-7.5Mo after hydrothermal treatment. Ingots were obtained in arc melting furnace under an argon atmosphere and then homogenized under vacuum at 1100ºC for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting and grinding. For surface treatment, samples were immersed in a container with NaOH aqueous solution 5M, autoclaved, washed with distilled water. Followed, samples were heat treated and they were soaking in 5xSBF to form an apatite layer on the surface. Surfaces were investigated by, scanning electron microscopy, X-Rays powder diffraction, atomic force microscopy and contact angle, in order to evaluate the wettability of the alloy surface. The results were compared with our previous studies using the group of chemical surface treatments and results shows better condition is 120 minutes in the autoclave
Resumo:
As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing
Resumo:
Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 +/- 1 and 60 +/- 2 degrees C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 +/- 15.9, 52.2 +/- 23.6, and 59.9 +/- 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: Ti-Ta alloys have high potential for dental application due to a good balance between high strength and low modulus. Absence of primary anchoring may occur when dental implants are installed immediately after tooth extraction. Tranexamic acid (TEA) is used to reduce fibrin degradation and can prevent early blood clot breakdown. The aim of this study was to evaluate the biocompatibility of Ti-30Ta implants associated or not with tranexamic acid and installed with compromised primary stability. Methods and materials: Fabricated were 20 implants of titanium ASTM F67 (Grade 4) and 20 implants of Ti-30Ta alloy with dimensions of 2.1 mm × 2.8 mm Ø. They were divided (n = 10) into Group I (Ti machined), Group II (Ti machined/tranexamic acid), Group III (Ti-30Ta alloy) and Group IV (Ti-30Ta/tranexamic acid) and were implanted in tibia (defects with 2.5 mm × 3.2 mm Ø) of 40 male rats (250 g). The surgical sites were rinsed with 5% tranexamic acid solution in Groups II and IV. The animals were euthanized at 45 days postoperative. The pieces were processed in methyl methacrylate (Stevenel's blue/Alizarin red). The percentage of peri-implant tissue repair was analyzed via images obtained by an optical microscope coupled to a digital camera using Leica software and Adobe Photoshop QWin. Data were analyzed statistically with a significance level of 5%. Results: Histomorphometric results showed 97.16% of bone-implant contact for group IV, 89.78% of bone contact for group III, 70.89% for group II and 61.59% of bone contact for group I. The statistical analyses demonstrated significant differences (P < 0.05) among group I and other groups. Conclusion: The results suggest that (a) Ti-30Ta promoted an increase of bone healing and apposition around implant; (b) tranexamic acid favored the stabilization of blood clot and bone formation.
Resumo:
New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.