305 resultados para soybean soluble polysaccharide
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to verify application of two methodologies: substrate moistened with herbicide solution (SM) and immersion of seeds in herbicide solution (IH) for detecting soybean seeds genetically modified. For this, non-transgenic and transgenic soybean seeds, harvested in the 2008/2009 crop seasons were used. The treatments with substrate moistened were: SM1) 0.03% herbicide solution, at 25 ºC, with evaluation in the sixth day (hs -0.03% -25 ºC, 6th d); SM2) HS -0.03% -35 ºC, 5th d; SM3) HS -0.03% - 40 ºC, 5th d; and SM4) hs -0.06% -5 ºC, 5th d. In the methodology of immersion of seeds the following treatments were performed: IH1) seed immersion in a 0.6% herbicide solution, at 25 ºC, for 1 h, (si -0.06% -25 ºC, 1 h; IH2) si -0.06% - 35 ºC, 30 min.; IH3) si -0.06% -40 ºC, 30 min.; IH4) si -0.12% -35 ºC, 30 min.; and IH5) si -0.12% -40 ºC, 30 min. Bioassays allow detecting soybean seeds tolerant to glyphosate herbicide within five days. The seeds of non-genetically modified and genetically modified soybean cultivars may be easily distinguished through the treatments SM2 and SM4 of the moistened substrate methodology; and treatments IH3, IH4, and IH5 of seed immersion methodology. Both methodologies are easily feasible, practical, and applicable in seed analysis laboratories, once do not require special equipments.
Resumo:
Physiological potential characterization of seed lots is usually performed by germination and vigor tests; however, the choice of a single test does not reflect such potential, once each test assesses seeds of differentiated mode. Multivariate techniques allow understanding structural dependence contained in each variable, as well as characterize groups of seed lots according to specific standards. The study aimed at evaluating variability among soybean seed lots and discriminate these lots by multivariate exploratory techniques as function of seed vigor. Experiment was performed with 20 soybean seed lots (10 lots cv. BRS Valiosa RR and 10 lots cv. M-SOY 7908 RR). Seed physiological potential was assessed by testing for: germination (standard, and under different water availability); vigor (accelerated aging and electrical conductivity); and field seedling emergence. Cluster analysis of seed lots, as well as Principal Component Analysis was performed using data obtained on all tests. Multivariate techniques allowed stratifying seed lots into two distinct groups. Principal Component Analysis showed that values obtained for variables: field seedling emergence, accelerated aging, and germination under different water availability were linked to BRS Valiosa RR; while to variables germination and electrical conductivity, were linked to M-SOY 7908 RR.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sulfated polysaccharides derived from seaweed have shown great potential for use in the development of new drugs. In this study, we observed that a low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus terrificus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. Size exclusion chromatography experiments suggested that CrSP formed a stable complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction between negatively charged CrSP and the positively charged basic amino acid residues of sPLA2, because this interaction induced significant changes in sPLA2 enzymatic and pharmacological activities. CrSP caused a significant increase in sPLA2 enzymatic and bactericidal activity and increased its edematogenic effect. A pharmacological assay showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for use in humans and commercially raised animals.
Resumo:
Efficiency in the use of genetic variability, whether existing or created, increases when properly explored and analysed. Incorporation of biotechnology into breeding programs has been the general practice. The challenge for the researcher is the constant development of new and improved cultivars. The aim of this experiment was to select progenies with superior characteristics, whether or not carriers of the RR gene, derived from bi-parental crosses in the soybean, with the help of multivariate techniques. The experiment was carried out in a family-type experimental design, including controls, during the agricultural year 2010/2011 and 2011/2012 in Jaboticabal in the Brazilian State of São Paulo. From the F3 generation, phenotypically superior plants were selected, which were evaluated for the following traits: number of days to flowering; number of days to maturity; height of first pod insertion; plant height at maturity; lodging; agronomic value; number of branches; number of pods per plant; 100-seed weight; number of seeds per plant; grain yield per plant. Given the results, it appears possible to select superior progeny by principal component analysis. Cluster analysis using the K-means method links progeny according to the most important characteristics in each group and identifies, by the Ward method and by means of a dendrogram, the structure of similarity and divergence between selected progeny. Both methods are effective in aiding progeny selection.
Resumo:
The objective of this work was to evaluate the effectiveness of ruzigrass (Urochloaruziziensis) in enhancing soil-P availability in areas fertilized with soluble or reactive rock phosphates. The area had been cropped for five years under no-till, in a system involving soybean, triticale/black-oat, and pearl millet. Previously to the five-year cultivation period, corrective phosphorus fertilization was applied once on soil surface, at 0.0 and 80 kg ha-1 P2O5, as triple superphosphate or Arad rock phosphate. After this five-year period, plots received the same corrective P fertilization as before and ruzigrass was introduced to the cropping system in the stead of the other cover crops. Soil samples were taken (0-10 cm) after ruzigrass cultivation and subjected to soil-P fractionation. Soybean was grown thereafter without P application to seed furrow. Phosphorus availability in plots with ruzigrass was compared to the ones with spontaneous vegetation for two years. Ruzigrass cultivation increased inorganic (resin-extracted) and organic (NaHCO3) soil P, as well as P concentration in soybean leaves, regardless of the P source. However, soybean yield did not increase significantly due to ruzigrass introduction to the cropping system. Soil-P availability did not differ between soluble and reactive P sources. Ruzigrass increases soil-P availability, especially where corrective P fertilization is performed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)