254 resultados para amorphous aluminum phosphate
Resumo:
New Yb3+, Er3+ and Tm3+ doped fluoro-phosphate glasses belonging to the system NaPO3–YF3–BaF2–CaF2 and containing up to 10 wt% of rare-earth ion fluorides were prepared and characterized by differential scanning calorimetry, absorption spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and homogeneous glass-ceramics have been reproducibly obtained with a view to manage the red, green and blue emission bands and generate white light. X-ray diffraction as well as electron microscopy techniques have confirmed the formation of fluorite-type cubic nanocrystals at the beginning of the crystallization process while complex nanocrystalline phases are formed after a longer heat-treatment. The prepared glass-ceramics exhibit high optical transparency even after 170 h of thermal treatment. An improvement of up-conversion emission intensity – from 10 to 160 times larger – was measured in the glass-ceramics when compared to the parent glass, suggesting an important incorporation of the rare-earth ions into the crystalline phase(s). The involved mechanisms and lifetime were described in detail as a function of heat-treatment time. Finally, a large range of designable color rendering (from orange to turquoise through white) can be observed in these materials by controlling the laser excitation power and the crystallization rate.
Resumo:
This work reports the experimental evaluation of physical and gas permeation parameters of four spinel-based investments developed with or without inclusion of sacrificial fillers. Data were compared with those of three commercial formulations. Airflow tests were conducted from 27 to 546°C, and permeability coefficients were fitted from Forchheimer's equation. Skeletal densities found for spinel- (ρs = 3635 ± 165 kg/m3) and phosphate-bonded (ρs = 2686 ± 11 kg/m3) samples were in agreement with the literature. The developed investments were more porous and less permeable than commercial brands, and the differences were ascribed to the different pore morphologies and hydraulic pore sizes of ceramic matrices. The inclusion of both fibers and microbeads resulted in increases of total porosity (42.6–56.6%) and of Darcian permeability coefficient k1 (0.76 × 10−14–7.03 × 10−14 m2). Air permeation was hindered by increasing flow temperatures, and the effect was related to the influence of gas viscosity on ΔP, in accordance with Darcy's law. Casting quality with molten titanium (CP Ti) was directly proportional to the permeability level of the spinel-based investments. However, the high reactivity of the silica-based investment RP and the formation of α-case during casting hindered the benefits of the highest permeability level of this commercial brand.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Surface roughness analysis of dental ceramics treated with hydrofl uoric acid and aluminum oxide jet
Resumo:
The aim of this study was to evaluate the surface roughness of 5 indirect restorative materials treated with hydrofluoric acid to 10%, with aluminum oxide jet and a combination of both. The specimens was prepared with 10 mm in diameter and 2 mm thickness, divided into fi ve groups: (1) Ceromer (CeseadII-Kuraray), (2) Leucite crystals ceramics (IPS EmpressIIIvoclarforcasket), (3) glass ceramic with fluorapatite (IPS D. Sign-Ivoclar), (4) lithium disilicate ceramic (IPS Empress II-Ivoclar restorations), (5) ceramics (Cergogold-Degussa). For all groups were performed the controls, and the surfaces with the 3 types of treatment. For testing roughness used the rugosimeter Taylor/Hobson-Precision, model form tracerSV-C525 high sensitivity. After confi rmation of variance analysis with a signifi cance level of 1% (p < 0.01), there was equality between the average roughness of materials from groups 1, 3 and 5, and the group 2 was different from the others. It was also found that the ceramics of the group 5 behaved similar to group 4. However the lowest average roughness was observed in group 2 ceramic. In the evaluation between the types of treatment, the aluminum oxide jet and associations and blasting with hydrofl uoric acid were similar, and different isolated hydrofl uoric acid, and 3 types of treatment signifi cantly higher than the control group. All treatments promoted superfi cial alterations in all tested materials.
Resumo:
The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.
Resumo:
The purpose of this study was to evaluate the macroscopy and microstructure of a double setting alpha-tricalcium phosphate bone cement sphere provided with interconnection channels (alpha-TCP-i), as well as the integration of the implant with the rabbits' orbital tissue, through macroscopic analysis and histopathology. The external and internal surfaces of the alpha-TCP-i were evaluated macroscopically and by electron microscopy. Twelve New Zealand rabbits received 12mm implants of alpha-TCP-i following enucleation of the left eye. The clinical assessment was undertaken daily during the first 15 days, followed by fortnightly assessment until the end of the study period. For the morphological analysis, exenteration was performed in 3 animals per experimental period (15, 45, 90 and 180 days). The external and internal surfaces of the implant appeared solid, smooth and compact, with six channels which interconnected centrally. The micro-architecture was characterized by the formation of columns of hexagonal crystals. No signs of infection, exposure, dehiscence of sutures or extrusion of the implant were noted in any of the animals during the entire period of the study. The morphological evaluation demonstrated the presence of a thin capsule around the implant, from whence appeared fibro-vascular projections, which penetrated it through the interconnecting channels. In the first days after the insertion of the implant, an intense inflammatory reaction was noted. At 180 days, however, there were no signs of inflammation. The alpha-tricalcium phosphate cement implant was well tolerated in this rabbit model and appeared to be relatively inert with some fibrovascular ingrowth through the large channels.
Characterization of aluminum hydroxide (Al(OH)(3)) for use as a porogenic agent in castable ceramics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Mapping of clay, iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)