737 resultados para adubação potássica
Resumo:
The objective of this study was to investigate the effect of the application of N fertilizer and the cutting age on the dry biomass production of elephant grass. The experiment was performed with the variety Paraiso and planted in a Ferralsol in 2008 in the district of Gurupi (State of Tocantins). Four different rates of urea application were tested (0, 50, 100 and 150 kg ha(-1)) and harvests were made at 120, 150 or 180 days after germination (DAG) of the setts. The dry matter and total N accumulation were evaluated. Dry matter production increased with dose of N, the greatest effect being observed at 180 DAG. There was a linear increase in dry matter (R-2 = 0.75**) and N accumulation (R-2 = 0.96**) permitting a productivity of 34 t ha(-1) of dry matter and an accumulation of 471 kg N ha(-1). The N utilization efficiency (biomass production per unit of applied N) increased with plant age. The higher efficiency of N use favored the quality of biomass production for energy production owing to the higher fibre content.
Resumo:
The study had the objective to evaluate the effect of the fertilization with filter cake enriched with soluble phosphate on the sugar yield. The experiment carried at Presidente Prudente-SP, used a randomized complete block design, in the factorial scheme 5 x 4, where the first factor consisted of doses of filter cake (0; 0.5; 1.0; 2.0 and 4.0 t ha(-1)) and the second, doses of phosphorus fertilizer (0, 50, 100, 200 kg ha(-1) of P2O5), with 4 replicates, totaling 80 plots. The results indicated that phosphorus applied in planting furrows improves the quality of sugarcane raw matter by increasing the levels of soluble solids, total reducing sugars and sucrose in the stalks. The phosphorus also increases the productivity of sugar. The filter cake applied in planting furrow has the potential to partially replace the chemical fertilization with phosphate aiming to improve the quality and the productivity of sugar. The best combination was filter cake at dose between 2.6 and 2.7 t ha(-1) combined with dose between 160 and 190 kg P2O5 ha(-1) for obtaining best response of soluble solids and productivity of sugar.
Resumo:
The organic production systems based on natural processes do not allow the use of synthetic fertilizers with a high solubility, so it is required the use of technologies in accordance with the organic production legislation in order to make the technical, economical and environmental sustainable activities viable. To evaluate the effects of the usage of mineral and organic natural fertilizers, associated with liquid biofertilizers (BLE= enriched liquid biofertilizer and BF= leaf biofertilizers) on the production of the sugar apple fruit crop Annona squamosa L., replacing totally the chemical fertilizers, used by conventional farming systems, a nine year old orchard was driven in the irrigated plot n degrees 1295, irrigated project Nilo Coelho, district of Petrolina - PE. The experiment was carried out from September 2005 to February 2006. The experimental design was done through randomized blocks with eight treatments and four replications in plots of three plants each, with 96 plants in total. The treatments were the following: T(1) - plants with no fertilizer; T(2) - 60 g de N + 32 g de P(2)O(5) + 48 g de K(2)O; T(3) - 90g de N + 32 g de P(2)O(5) + 48 g de K(2)O; T(4) - 30 g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 15 L de BLE + BF a 5 %; T(5) - 60g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 30 L de BLE + BF a 5 %; T(6)- 90g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 45 L de BLE + BF a 5 %; T(7) - 120g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 60 L de BLE + BF a 5 %; T(8) - 150 g de N + 32 g de P(2)O(5) + 48 g de K(2)O + 75 L de BLE + BF a 5 % The fruit growth analyses (diameter and average length), total yield, productivity, average fruit weight, average number of fruits, fresh weight of the skin and pulp and dry weight of the fruits were used to evaluate the experiment. The results were relevant to the total production, fresh weight of the skin and dry weight of the fruits. The use of organominerals associated with liquid fertilizers increased significantly the productivity in values ranging from 10.44% (T(5) = 1.98 t ha(-1)) to 24.52 % (T(7) = 12.34 %). The treatment T(3) stood out (90g de N + 32g de P(2)O(5) + 48g de K(2)O) with a higher production than the control. The fruit weight increased in the fertilized treatments, with values increasing from treatment (T(2) = 5.26 %) to the treatment (T(7) = 12.34 %) in relation to the control. The fruit development was characterized by an average growth increase of 82 % in length and 84 % in diameter until the 56(th) day, with a sigmoidal growth pattern.
Resumo:
Organic carbon is a major component of soil organic matter and its stock is influenced by the management system adopted. This study aimed to examine the effects of cropping systems and nutrient sources (mineral and organic) on the concentrations and storage of soil organic carbon in no-tillage system. The experiment was carried out in Mercedes, Parana, Brazil, in an Nitossolo Vermelho (Alfisol) from October 2007 to September 2009. The treatments consisted of four crop succession systems: (1) soybean/wheat/corn/wheat; (2) soybean/black oat/corn/black oat, (3) soybean/radish/corn/radish and (4) soybean/common vetch/corn/common vetch and by two sources of nutrients (mineral and organic), arranged in a to split plot randomized block design with four replications. Soil samples were collected in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20 to 0.40 m deep in the first and the second years of cultivation. Different cropping systems does not affect the content and the stock of soil organic carbon in the first two years of adoption of the systems. The organic fertilization with manure increased soil organic carbon stock, with an annual contribution of C, layer 0.0 to 0.20 m, 1.15 Mg ha(-1) yr(-1). Cropping systems fertilized with mineral fertilizers provide the greatest losses of soil organic carbon, resulting in negative balance of C in soil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this research was to evaluate the residue from cassava, known as manipueira, as an alternative for tomato (Lycopersicon esculentum) fertilization. This experiment was carried out in UNESP with the cultivar Rio Grande. The experimental design was a completely randomized blocks in a 3 × 3 factorial arrangement with five blocks. Treatments constituted the following: 1) witness; 2) 54 m3/ha of manipueira; 3) 108 m3/ha of manipueira; 4) half recommended mineral fertilization; 5) half recommended mineral fertilization + 54 m3/ha of manipueira; 6) half recommended mineral fertilization + 108 m3/ha of manipueira; 7) recommended mineral fertilization; 8) recommended mineral fertilization + 54 m3/ha of manipueira and 9) recommended mineral fertilization + 108 m3/ha of manipueira. Tomato yield, number of fruits per plant, fruit diameter and lenght, total soluble solids (TSS), total titratable acidity (TTA) and the ratio TSS/TTA were evaluated. The results obtained indicated that manipueira contributed significantly to yield and quality of pos-harvested tomato fruits.
Resumo:
The objective of this research was to study the porosity, bulk density and retention of water of an Oxisol, located in the Northwestern region of Sn̄o Paulo state, Brazil. The soil was cultivated with Citrus sp., to which green manure was applied between rows for three years. Each of six species of green manure crops (Crotalaria juncea L., Mucuna deeringiana Steph. & Bart., Canavalia ensiformis L. DC., Cajanus cajan L., Lablab purpureum L. and Ricinus communis L.) were seeded for three years (1995, 1996 and 1997) between Citrus rows, plus a treatment with a mix of all six species and a control (natural regrowth af vegetation). The experimental design was a randomized complete block design, with four replications for each of the eight treatments. Water retention, microporosity, macroporosity, total porosity and bulk density were analyzed in the beginning (1995) and end (1997) of the experiment, at three depth ranges (0-0.10; 0.10-0.20 and 0.20-0.40m). We concluded that there were statistically significant differences for bulk density, macroporosity, total porosity and retention of water among the different soil depth ranges; there were no significant differences among treatments though.
Resumo:
The objective of this paper was to evaluate the phenotypical plasticity of external morphology of Lippia alba in response to two luminosity level and four organic-mineral fertilization level. The morphological plasticity was quantified by the phenotypic variation intensity of the morphological characters (ramifications, leafs, inflorescences, flowers, height, stem diameter, leaf blade length, foliar blade breadth and space between branches). It was possible to verify significant effect as a consequence of luminosity and substratum variations. However, the interaction between these factors was not observed suggesting that they act independently. The majority of characters revealed high magnitude of phenotypical plasticity. The results obtained suggest that luminosity intensity and substratum quality contribute to amplify the phenotypical expression of Lippia alba.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to evaluate the best time for application of N for an irrigated corn crop in a no-tillage system in the State of Alagoas. Three corn hybrids were used (TORK, FORT and BRS-3003) with four application times (days after sowing - DAS) for fertilizing with nitrogen as top dressing, consisting of the following treatments: 1) 120 kg ha-1 at 15 DAS, 2) 60 kg ha-1 at 15 DAS and 60 kg ha-1 at 30 DAS, 3) 120 kg ha-1 at 30 DAS, 4) 60 kg ha-1 at 30 DAS and 60 kg ha -1 at 45 DAS and 5) control treatment without N fertilization. The experimental design was in randomized blocks with four replications in a subdivided plot scheme. The components of the production studied were: final population of plants ha-1, numbers of corn ears ha-1 length of corn ears and number of rows of grains of corn and mass of 1000 grains. The productivities of grains obtained did not present significant differences among the treatments that received fertilization with nitrogen, independent of the time of application and number of split applications. It is concluded that in the notillage system in Alagoas spliting the manuring with nitrogen (top dressing) is not necessary.
Resumo:
Although the management of the coffee crop is well established in Brazil, there is still room for its improvement in relation natural resources available in each region, aiming the increase in productivity. Here are presented results regarding the fate of the fertilizer nitrogen (N) applied to a coffee plantation related to the prevailing soil water conditions. Soil water balances are discussed, which allowed evaluation of the root distribution, determinations of the crop coefficient and of the soil water conditions during the development of the crop. Approximately, 60% of the root system was distributed in the 0-0.3 m soil layer and the average crop coefficient was 1.1 for 3 to 5 year old plants. Using an N label, the 15N, it was possible to study the distribution of N in the plant and in the soil and establishes general N balances, which also include losses like leaching and volatilization. After two years of ammonium sulfate application, at rates of 280 (1st year) and 350 (2nd year) kg.ha-1 of N, in four equal application performed during the period of positive growth rate, the recuperation of fertilizer N were 19.1% by the aerial plant part and 9.4% by the roots, 12.6% remained in the soil and 11.2% in the litter; 0.9% was lost by volatilization and 2.3% by leaching; 26.3% was exported through harvesting and 18.2% remained in non evaluated compartments. From the applied 630 kg.ha -1 of N during the two years, 180 kg.ha -1 of N were found in the plant (shoot and root), which corresponds to 28.6%; 150 kg.ha -1 of N remained available for the next years(soil and litter), and only 20 kg.ha -1 of N were effectively lost (volatilization and leaching).
Resumo:
In places characterized with high temperatures and rain occurrence in great intensity in the summer, but with dry winter, the major limitations for the sustainability of no tillage systems are low production of straw during fall-spring period and the fast decomposition during the rain season. To try to solve the problem, intercropped cultures of grains with forage species has presented reliable results; because offer vegetal covering to the next sowing, giving sustainability to the no tillage system. However, being a recent technology, its needed further studies in different areas involved for this system of production. Thus, this study had the objective 1) to evaluate the production of corn grain at different periods of intercropping with Brachiaria brizantha and Panicum maximum in no tillage system, and 2) aimed to evaluate the performance of forage at different periods of intercropping and the responses to nitrogen fertilization after the harvest of the corn, assessing mass productivity and quality. The experiment was carried out at the Lageado experimental farm, School of Agricultural Sciences, Botucatu campus belonged to São Paulo State University (UNESP) in structuralized Red Nitosol (Afisol). The experimental design was randomized blocks with four replications. The treatments were composed for four systems of no tillage involving corn: 1) single corn; 2) corn with Brachiaria brizantha cv. Marandu intercropped in the sowing; 3) corn with Brachiaria brizantha cv. Marandu intercropped with the fertilization of covering; 4) corn with Panicum maximum cv. Mombaça intercropped in the sowing and 5) corn with Panicum maximum cv. Mombaça intercropped with the fertilization of covering. After the harvest of the corn, it was applied, in equivalent quantities of nitrogen, ammonium nitrate in covering in doses of 0, 30, 60 and 120 kg ha-1, determining the forage mass productivity and quality. The simultaneous tillage of corn with P. maximum cv. Mombaça in the sowing compromises the grain productivity. When sowed in intercropping, B. brizantha presents a fiber concentration reduction and greater TDN concentration during the fall-spring period. Regarding benefits of intercropped cultures seeking to use in systems of production like agriculture-pasture integration, the best intercropping to be utilized is corn sown simultaneously with B. brizantha cv. Marandu.
Resumo:
Agronomic practices that help farmers to raise yield and reduce costs must be studied to ensure agricultural sustainability. Thus, the objective of this study was to analyze economically the effect of soil management and nitrogen fertilization in maize crops. Treatments consisted of a combination of 3 soil management techniques (plow harrows + floating harrows, chisel + floating harrows, and no-tillage), 5 periods of nitrogen fertilization (control - 0 kg ha -1 N; 120 kg ha -1 after sowing (S); 120 kg ha -1 in the V 6 stage; 30 kg ha -1 (S) + 90 kg ha -1 in V 6; 30 kg ha -1 (S) + 45 kg ha -1 in V 4 + 45 kg ha -1 in V 8 The total operating cost (TOC), gross revenue (GR), operating profit (OP), profitability index (PI), break-even yield, and break-even price were estimated. It was concluded that the no-tillage system, after 11 years of management, associated with nitrogen fertilization promotes positive PI and OP, being useful to farmers.
Resumo:
Nitrogen limitation in the common bean (Phaseolus vulgaris L.) produces reduced productivity and seeds with low protein content and physiological quality. We assessed the effects of nitrogen fertilizer side dressing on the protein content and physiological quality of the seeds of P. vulgaris L. cultivars (cv.) IPR Juriti and Pérola grown in plots (soil type = Dystrophic Red Latosol) using a no-tillage system under a thick mulch of millet residues at the Experimental Station of UNESP-Ilha Solteira campus, located in Selvíria, MS (Köppen climate type = Aw) during autumn (March/June) and winter (June/September) 2005. For each cultivar, a randomized block experimental design was used with four replicates and factorially arranged treatments equivalent to 0, 30, 60, 90 and 120 kg.ha-1 added nitrogen (as urea, containing 45% of N) applied as a side dressing during the V4-3 and V4-6 phenological stage corresponding to the 3rd and 6th completely opened trifoliolate leaf on the main stem. Supplementation with up to 120 kg.ha-1 nitrogen promoted a greater increase in crude protein at V4-3 (unsupplemented = 17.6% and 16.3%; 120 kg.ha-1 N = 24.1% and 22.3% for cv. IPR Juriti and Pérola, respectively) than at V4-6 (unsupplemented = 19.2% and 18.3%; 120 kg.ha-1 N = 21.3% and 20.3% for cv. IPR Juriti and Pérola, respectively). About 90% of the crude protein from cv. IPR Juriti was composed of soluble protein compared to 72% for the cv. Pérola. Albumins and globulins represented about 80% of the soluble protein and prolamins were lower at 0.6%. In conclusion, nitrogen fertilization up to 120 kg.ha-1 applied as a side dressing at the V4-3 phenological stage in no-tillage under a thick mulch of millet promoted a greater increase of crude protein in common bean seeds than at the V4-6 stage. The highest accumulation of soluble protein occurred at 90 kg.ha-1 applied nitrogen without having a significant influence on the physiological quality of the seeds.