318 resultados para Tetrahydrate sodium perborate
Resumo:
Glass foams using float glass waste and sodium hydroxide were produced. The influence of the sodium hydroxide amount in the foam formulation was studied. Titanium dioxide was used as a strengthening agent. The variations of temperature, heating rate and sintering time were investigated during the synthesis process. Open porosity was estimated using mercury porosimetry. The morphology of the glass foams was evaluated using scanning electron microscopy, phase formation was studied using X-ray diffraction, and chemical composition was estimated using X-ray fluorescence. As a result, glass foams with macroporosity were obtained. Since the glass foams used glass waste as reactant, the results suggest the development of an alternative route for glass recycling. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Purpose: To develop and characterize solid dispersions of praziquantel (PZQ) with sodium starch glycolate (SSG) for enhanced drug solubility. Methods: PZQ solid dispersion (SD) was prepared using co-precipitation method by solvent evaporation. The ratios of PZQ to SSG were 2:1, 1:1, 1:2, 1:3 (w/w). PZQ solubility was evaluated in purified water, and PZQ dissolution test was carried out in 0.1N HCl. Structural characterization of the dispersions was accomplished by x-ray diffraction (XRD) and infrared spectroscopy (FTIR) while the external morphology of the SDs, SSG and PZQ were studied by scanning electron microscopy (SEM). Mucoadhesion properties of the SD (1:3) and SSG, on mucin disks were examined using texture profile analysis. Results: The highest solubility was obtained with 1:3 solid dispersion, with PZQ solubility of 97.31 %, which is 3.65-fold greater than the solubility of pure PZQ and physical misture (PM, 1:3). XRD results indicate a reduction in PZQ crystallinity while infrared spectra showed that the functional groups of PZQ and SSG were preserved. SEM showed that the physical structure of PZQ was modified from crystalline to amorphous. The amount of PZQ in PM and SD (1:3) that dissolved in 60 min was 70 and 88 %, respectively, and these values increased to 76 and 96 %, respectively. The solid dispersion reduced the mucoadhesive property of the glycolate. Conclusion: Solid dispersion formulation using SSG is a good alternative approach for increasing the dissolution rate of PZQ. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.
Resumo:
Background: Activation of GABAB receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABAB receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used.Results: In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABAB antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate.Conclusions: Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure. © 2013 Kimura et al.; licensee BioMed Central Ltd.
Resumo:
Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
Accumulating evidence suggests an association between body volume overload and inflammation in chronic kidney diseases. The purpose of this study was to evaluate the effect of dialysate sodium concentration reduction on extracellular water volume, blood pressure (BP), and inflammatory state in hemodialysis (HD) patients. In this prospective controlled study, adult patients on HD for at least 90 days and those with C-reactive protein (CRP) levels ≥ 0.7 mg/dL were randomly allocated into two groups: group A, which included 29 patients treated with reduction of dialysate sodium concentration from 138 to 135 mEq/L; and group B, which included 23 HD patients not receiving dialysate sodium reduction (controls). Of these, 20 patients in group A and 18 in group B completed the protocol study. Inflammatory, biochemical, hematological, and nutritional markers were assessed at baseline and after 8 and 16 weeks. Baseline characteristics were not significantly different between the two groups. Group A showed a significant reduction in serum concentrations of tumor necrosis factor-α, and interleukin-6 over the study period, while the BP and extracellular water (ECW) did not change. In Group B, there were no changes in serum concentrations of inflammatory markers, BP, and ECW. Dialysate sodium reduction is associated with attenuation of the inflammatory state, without changes in the BP and ECW, suggesting inhibition of a salt-induced inflammatory response. Copyright © 2013 Informa Healthcare USA, Inc.
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
Objective: Gamma-aminobutyric acid A (GABAA) receptor activation with muscimol in the lateral parabrachial nucleus (LPBN) induces water and 0.3 M NaCl intake. The purpose of this study was to investigate whether a local inflammatory event, such as periodontal disease (PD), is able to alter the effects of muscimol on water and 0.3 M NaCl intake in fluid-replete rats and in rats treated with furosemide (FURO) combined with captopril (CAP) injected subcutaneously. Design: Male Wistar rats were divided into two groups: with PD and those without PD (control condition). Fifteen days after PD, both groups had cannulas implanted bilaterally into the LPBN. Results: In fluid-replete rats without PD, injections of muscimol (0.5 nmol/0.2 μl) into the LPBN induced 0.3 M NaCl and water intake and a pressor response. In fluid-replete rats with PD, a decrease was observed in water intake and pressor response but not in 0.3 M NaCl intake. In control rats with FURO + CAP treatment, injections of muscimol into the LPBN increased 0.3 M NaCl and water intake. In PD rats with FURO + CAP treatment, a decrease was observed in 0.3 M NaCl and water intake after muscimol in the LPBN. Alveolar bone loss and interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) plasmatic concentration were higher in PD rats in comparison with controls. Conclusion: These results suggest that PD is able to reduce the pressor response and the dipsogenic and natriorexigenic effects induced by the activation of GABAA receptors in the LPBN, probably due to the elevation of the plasmatic concentration of pro-inflammatory cytokines IL-6 and TNF-α. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To investigate the effect of fluoride (0, 275 and 1250 ppm F; NaF) in combination with normal and low salivary flow rates on enamel surface loss and fluoride uptake using an erosion-remineralization-abrasion cycling model. Design: Enamel specimens were randomly assigned to 6 experimental groups (n = 8). Specimens were individually placed in custom made devices, creating a sealed chamber on the enamel surface, connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min followed by artificial saliva at 0.5 (normal flow) or 0.05 (low flow) ml/min, for 60 min. This cycle was repeated 4×/day, for 5 days. Toothbrushing with abrasive suspensions containing fluoride was performed for 2 min (15 s of actual brushing) 2×/day. Surface loss was measured by optical profilometry. KOH-soluble fluoride and enamel fluoride uptake were determined after the cycling phase. Data were analysed by two-way ANOVA. Results: No significant interactions between fluoride concentration and salivary flow were observed for any tested variable. Low caused more surface loss than normal flow rate (p < 0.01). At both flow rates, surface loss for 0 was higher than for 275, which did not differ from 1250 ppm F. KOH-soluble and structurally-bound enamel fluoride uptake were significantly different between fluoride concentrations with 1250 > 275 > 0 ppm F (p < 0.01). Conclusions: Sodium fluoride reduced enamel erosion/abrasion, although no additional protection was provided by the higher concentration. Higher erosion progression was observed in low salivary flow rates. Fluoride was not able to compensate for the differences in surface loss between flow rates. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of different concentrations of sodium trimetaphosphate (TMP) with and without fluoride (F) on the concentration of calcium (Ca), phosphorus (P) and F in hydroxyapatite (HA). Synthetic HA powder (0.15 g) was suspended (n=6) in solutions (75 mL) of TMP at 0%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, 4.0%, 6.0%, 8.0% and 10% concentrations in the presence and absence of 100 ppm F and subjected to a pH-cycling process. The precipitates were filtrated, dried at 70° C for 24 h and ground onto a fine powder. The concentrations of F (KOH (CaF2) and HCl (FA) soluble), Ca (Arsenazo III), and P (molybdate method) in HA were determined. The Ca P, and Ca/P ratio data were subjected to Tukey's test and the F data were subjected to Student-Newman-Keuls test (p<0.05). The addition of TMP to the samples reduced F deposition to 98% (p<0.001). The groups containing 100 ppm F and 0.4% or 0.6% TMP exhibited a higher Ca concentration than the group containing only 100 ppm F (p<0.05). Furthermore, the HA treated with 0.2% and 0.4% TMP and 100 ppm F showed a higher Ca/P ratio than the other groups (p<0.001). In conclusion, TMP at 0.2%, 0.4% and 0.6% concentrations combined with F seemed to be able to precipitate HA with low solubility. However, especially at high concentrations, TMP interferes with F deposition on HA.
Resumo:
The objective of this study was to evaluate in vitro the effect of a low fluoride toothpaste (450 μgF/g, NaF) combined with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel remineralization. Bovine enamel blocks had the enamel surface polished sequentially to determine the surface hardness. After production of artificial carious lesions, the blocks selected by their surface hardness were submitted to remineralization pH cycling and daily treatment with dentifrice suspensions (diluted in deionized water or artificial saliva): placebo, 275, 450, 550 and 1,100 μgF/g and commercial dentifrice (positive control, 1,100 μgF/g). Finally, the surface and cross-section hardness was determined for calculating the change of surface hardness (%SH) and mineral content (%ΔZ). Fluoride in enamel was also determined. The data from %SH, %ΔZ and fluoride were subjected to two-way analysis of variance followed by Student-Newman-Keuls's test (p<0.05). The mineral gain (%SH and %ΔZ) was higher for toothpastes diluted in saliva (p<0.05), except for the 450 mgF/g dentifrice with Cacit/TMP (p>0.05). The 450 Cacit/ TMP toothpaste and the positive control showed similar results (p>0.05) when diluted in water. A dose-response was observed between fluoride concentration in toothpastes and fluoride present in enamel, regardless of dilution. It was concluded that it is possible to enhance the remineralization capacity of low F concentration toothpaste by of organic (Cacit) and inorganic (TMP) compounds with affinity to hydroxyapatite.
Resumo:
The acute phase response refers to a nonspecific and complex systemic reaction of the organism that occurs shortly after any tissue injury. The acute phase response is considered a part of the innate host defense system, which is responsible for the survival of the host during the critical early stages of attack, and in evolutionary terms, it precedes the acquired immune response. The purpose of this study was to determine serum protein concentrations, including the acute phase protein profile in agoutis (Dasyprocta azarae) in captivity, by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Blood samples from 11 adult healthy animals (nine females and two males) were obtained. The serum proteinogram had 21 proteins with molecular weights ranging from 15 to 240 kD. The acute phase proteins identified were: ceruloplasmin, transferrin, albumin, haptoglobin, α-1-acid glycoprotein, and hemoglobin. IgA, IgG heavy and light chains, and nonnominal identified proteins of 240, 210, 140, 98, 78, 48, 35, 31, 23, and 15 kD were also identified. The determination of the acute phase protein concentrations is a useful method for the early detection of subclinical disease or changes in the healthy animal, with predictive information on the development of disease in the future. It is possible to standardize the reference values of the serum protein profile of agoutis, which can be used for diagnosis and prognosis, treatment and clinical follow-up of nutritional disorders, and immune-mediated inflammatory diseases that may affect these animals. © 2012 Springer-Verlag London Limited.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Injections of noradrenaline into the lateral parabrachial nucleus (LPBN) increase arterial pressure and 1.8% NaCl intake and decrease water intake in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin converting enzyme inhibitor captopril (CAP). In the present study, we investigated the influence of the pressor response elicited by noradrenaline injected into the LPBN on FURO + CAP-induced water and 1.8% NaCl intake. Male Holtzman rats with bilateral stainless steel guide-cannulas implanted into LPBN were used. Bilateral injections of noradrenaline (40 nmol/0.2 μl) into the LPBN increased FURO + CAP-induced 1.8% NaCl intake (12.2 ± 3.5, vs., saline: 4.2 ± 0.8 ml/180 min), reduced water intake and strongly increased arterial pressure (50 ± 7, vs. saline: 1 ± 1 mm Hg). The blockade of the α1 adrenoceptors with the prazosin injected intraperitoneally abolished the pressor response and increased 1.8% NaCl and water intake in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. The deactivation of baro and perhaps volume receptors due to the cardiovascular effects of prazosin is a mechanism that may facilitate water and NaCl intake in rats treated with FURO + CAP combined with noradrenaline injected into the LPBN. Therefore, the activation of α2 adrenoceptors with noradrenaline injected into the LPBN, at least in dose tested, may not completely remove the inhibitory signals produced by the activation of the cardiovascular receptors, particularly the signals that result from the extra activation of these receptors with the increase of arterial pressure. © 2013 Elsevier Inc.
Resumo:
The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1±3.9 vs. saline: 2.2±0.7)ml/210min, n=8) and water (17.7±1.9 vs. saline: 2.9±0.5ml/210min). Conversely, 0.3M NaCl (27.8±2.1ml/210min) and water (22.8±2.3ml/210min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation. © 2013 The Authors.
Resumo:
Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.