249 resultados para Moringa oleifera Lam
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
Avaliou-se a composição centesimal e análise físico-química do Lentinus strigosus, um cogumelo comestível de ocorrência na Amazônia brasileira, produzidos em substratos alternativos à base de resíduos madeireiros e agroindustriais. Com este objetivo, determinou-se C, N, pH, sólidos solúveis, atividade de água, proteína, lipídios, fibra total, cinzas, carboidratos e energia. Os substratos foram formulados a partir de serragem de Simarouba amara Aubl. (marupá), Ochroma piramidale Cav. ex. Lam. (pau-de-balsa) e Anacardium giganteum (cajuí); e do estipe de Bactris gasipaes Kunth (pupunheira) e de Saccharum officinarum (cana-de-açúcar). Os resultados demonstraram que: a composição nutricional do L. strigosus variou com o substrato de cultivo; os valores de proteína encontrados nos cogumelos cultivados nos diferentes substratos (18 - 21,5%) variaram de acordo com o substrato, sendo considerados elevados; os sólidos solúveis presentes nos cogumelos podem ter relação com vitaminas hidrossolúveis do complexo B; o L. strigosus pode ser considerado um importante alimento devido suas características nutricionais: alto teor de proteína, carboidratos metabolizáveis e fibras; baixos teores de lipídios e de calorias.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Purpose Mantle-cell lymphoma (MCL) has a variable natural history but is incurable with current therapies. MicroRNAs (miRs) are useful in prognostic assessment of cancer. We determined an miR signature defining aggressiveness in B-cell non-Hodgkin lymphomas (NHL) and assessed whether this signature aids in MCL prognosis.MethodsWe assessed miR expression in a training set of 43 NHL cases. The miR signature was validated in 44 additional cases and examined on a training set of 119 MCL cases from four institutions in Canada. miRs significantly associated with overall survival were examined in an independent cohort of 114 MCL cases to determine association with patient outcome. miR expression was combined with current clinical prognostic factors to develop an enhanced prognostic model in patients with MCL.ResultsFourteen miRs were differentially expressed between aggressive and indolent NHL; 11 of 14 were validated in an independent set of NHL (excluding MCL). miR-127-3p and miR-615-3p were significantly associated with overall survival in the MCL training set. Their expression was validated in an independent MCL patient set. In comparison with Ki-67, expression of these miRs was more significantly associated with overall survival among patients with MCL. miR-127-3p was combined with Ki-67 to create a new prognostic model for MCL. A similar model was created with miR-615-3p and Mantle Cell Lymphoma International Prognostic Index scores.ConclusionEleven miRs are differentially expressed between aggressive and indolent NHL. Two novel miRs were associated with overall survival in MCL and were combined with clinical prognostic models to generate novel prognostic data for patients with MCL. (C) 2013 by American Society of Clinical Oncology
Resumo:
In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10(-2)M circle dot c(2), with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.
Resumo:
We present the results of a search for gravitational waves associated with 223 gamma-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M(circle dot)c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10(-2) M(circle dot)c(2) at similar to 150 Hz with similar to 60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 x 10(-2) Mpc(-3) yr(-1). We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)