317 resultados para Micronutrient and fertilization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.
Resumo:
Mikania glomerata Sprengel leaf extracts have been used in cough syrup formulations due to the presence of active coumarin derivatives. Yields of such natural compounds in cultivated plants can be affected by several nutritional factors. To determine the effect of fertilization on biomass productivity, organ proportion and coumarin content, Mikania glomerata plants were submitted during one year to treatments with organic (humus or manure) and inorganic (different levels of nitrogen) fertilizers. Coumarin concentration was raised by organic fertilization, inorganic nutrients induced increased phytomass (stem and leaf) yield, however no fertilized plants showed enhanced leaf production.
Resumo:
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha-1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.
Resumo:
Currently there is very little information on the response of fruiting perennial plants to applied P. This is especially true for tropical production areas where soils have a high capacity of P fixation, and are poor in native phosphorus. An alternative to soil P fertilization, which is inefficient in fixing soils, is to apply phosphorus as a foliar spray. P is quickly absorbed by leaves, and is redistributed quite well through the plants because its phloem mobility, and foliar application may be a viable practice. The purpose of this present work, is to determine the effectiveness of foliar P application on the nutritional status and yield of guava. The experiment was done in a Typic Hapludox, for three consecutive agricultural years, in an adult orchard of 'Paluma' guava. Five treatments were tested: four rates leaf applications of P (0-0.5-1.0 and 2.0% of P2O5) and a control where P was applied to soil (200 g of P2O5/plant). Through the results it was verified that the foliar application of P altered the concentration of the nutrient in the soil (13 to 48 mg dm-3 P-resin), and in the guava leaves (1.2 to 1.8 g of P kg-1), but did not affect the production of fruits. In conclusion, in field conditions, it is viable to combine the phosphorus foliar fertilization with disease control, without increasing the operations and, consequently, the production cost.
Resumo:
The influence of endometrial cavity length (ECL) on implantation and pregnancy rates after 400 embryo transfers was studied prospectively in a population with the indication of IVF/intracytoplasmic sperm injection (ICSI). The tip of the transfer catheter was placed above or below the half point of the ECL in a randomized manner. Two analyses were performed: (i) absolute position (AP); embryo transfers were divided into three groups according to the distance between the end of the fundal endometrial surface and the catheter tip (DTC - distance tip catheter): AP 1 (n = 212), 10-15 mm; AP 2 (n = 158), 16-20 mm; and AP 3 (n = 30), ≥21 mm. (ii) relative position (RP) - embryo transfers were divided into four groups according to their RP [RP = (DTC/ECL) × 100]: RP 1 (n = 23), ≤40%; RP 2 (n = 177), 41-50%; RP 3 (n = 117), 51-60%; and RP 4 (n = 83), ≥61%. Analysis based on relative distance revealed significantly higher implantation and pregnancy rates (P < 0.05) in more central areas of the ECL. However, analysis based on absolute position did not reveal any difference. In conclusion, the present results demonstrated that implantation and pregnancy rates are influenced by the site of embryo transfer, with better results being obtained when the catheter tip is positioned close to the middle area of the endometrial cavity. In this respect, previous analysis of the ECL is the fundamental step in establishing the ideal site for embryo transfers.
Resumo:
Aloysia triphylla (L'Hérit) Britton is a perennial and bushy plant, with simple, entire, lanceolate and whorl shaped leaves and originally from South America. It is used as medicinal plant in Brazil with stomatic and sedative properties. The employment of stem cuttings for propagation of pre-selected plants, acquired great importance, because it eliminates the juvenile phase of seedlings, which can be produced in a shorter period of time. The rooting of stem cuttings is stimulated by auxin and, boric acid supply is essential for growth and development of initial rootlets. This micronutrient is required 48 hours after plant segments have been placed into auxin solution and it can be supplied any time, including the seedling growth period. The experiment was carried out in the Department of Plant Production, UNESP-Botucatu-SP-Brazil, with stem-cuttings of Aloysia triphylla (L'Hérit) Britton, Verbenaceae obtained from the Medicinal and Aromatic Plant Garden. The aim of the work was to verify the influence of growth regulators and boric acid on stem cutting rooting of this species. The 15 cm-stem cuttings, without leaves, were submerged during 24 hs in the following solutions: water; 150 mg.L-1 of IBA; 150 mg.L-1 of IBA+ Boric acid; 250 mg.L-1 of IBA; 250 mg.L-1 of IBA + Boric acid. The statistical design was entirely randomized with 5 treatments and 3 replications, totalizing 15 plots with 10 stem cuttings each. They were planted on propylene trays with vermiculite and kept under spraying condition during twenty five days. The best results were observed in treatment 250 mg.L -1 of IBA+ Boric acid on number of roots, length of roots, rooting percentage, fresh and dry weight of leaves when compared with all other treatments. We can conclude that this treatment is the most suitable for stem cutting rooting of this species.
Resumo:
In this study, non-nutrient heavy metal concentrations (Cd, Cr, Ni and Pb) were measured in composts during the composting process, in compost/Red-yellow Latosol mixtures, and in tomato plants. Composts were produced using sugar-cane bagasse, biosolids and cattle manure in the proportions 75-0-25, 75-12.5-12.5, 75-25-0, 50-50-0 or 0-100-0 (composts with 0, 12.5, 25, 50 and 100% biosolids). The composts were applied to the soil, in 6 treatments and a control (mineral fertilization). Control and the 0% biosolids treatments received inorganic nitrogen and all the treatments received the same amount of N, P and K. Tomato plants were cultivated in 24-L pots, in a green house in Jaboticabal, SP, Brazil. The experiment had a split plot design, in randomized blocks. Cadmium, Cr, Ni and Pb concentrations were determined during the composting process (7, 27, 57, 97 and 127 days after compost mounting), in soil (0 and 164 days after mixing) and plants. The samples were subjected to digestion with HNO 3, H2O2 and HCl and the metals were determined by AAS. Negative correlations were observed between Cd, Cr and Pb in the compost and Cd, Cr and Pb plant uptake, as well as Ni in the compost and Ni concentration in the plants. The concentrations of Cd, Cr, Ni and Pb increased during composting. Only Cd levels increased when compost was applied to the soil. The roots accumulated Cr, Ni and Pb, the stems and leaves, Cd and Ni and the fruits did not accumulate any of the metals studied. The composts with biosolids did not increase Cd, Cr, Ni and Pb uptake by plants.
Resumo:
Pearl millet (Penisetum glaucum) is an interesting species to be used as cover crop in tropical areas, showing a high ability in potassium uptake. Potassium (K) is not linked to organic compounds in the plant, and can easily be released from decaying straw becoming available for subsequent crops. This experiment evaluated K leaching from millet straw grown under potassium rates (0, 100, 200, and 300 mg dm-3), and submitted to five levels of simulated rain (5, 10, 20, 40, and 80 mm). Plants were grown in soil filled pots in a greenhouse. On the 50th day after emergence, the plants were desiccated with glyphosate. Artificial rain was applied over the straw. Potassium deficiency speeds up millet dehydration after herbicide application and increases lightly rain water retention in the straw. The amount of K leached right after plant desiccation is correlated with the residue nutrient content and can be as high as 64 kg ha-1 considering a mulch of 8 t ha -1. Although well-nourished millet plants release considerable amounts of K with the first rains, a large percentage of the nutrient is still retained in the straw. Copyright © Taylor & Francis, Inc.
Resumo:
The morphology and phenology of Sirodotia huillensis was evaluated seasonally in a central Mexican first-order calcareous stream. Water temperature was constant (24-25°C) and pH circumneutral to alkaline (6.7-7.9), and calcium and sulfates were the dominant ions. The gametophyte stages were characterized by the presence of a distinctive mucilaginous layer, a marked difference in phycocyanin to phycoerythrin ratio between female and male plants, and the presence of a carpogonia with a large trichogyne (>60 μm). Occasionally three capogonia were observed on a single basal cell. The 'Chantransia' stages were morphologically similar to those described for the other members of Batrachospermales. A remarkable observation was the formation of dome-shaped structures, consisting of prostrate filaments that are related with the development of new gametophytes. Chromosome numbers were n = 4 for fascicle cells, cortical filament cells and dome-shaped cells, and 2n = 8 for gonimoblast filament cells and 'Chantransia' stage filaments. Gametophytes and 'Chantransia' stages occurred in fast current velocities (60-170 cm/s) and shaded (33.1-121 μmol photons/m2/s) stream segments. The population fluctuated throughout the study period in terms of percentage cover and frequency: the 'Chantransia' stages were most abundant in the rainy season, whereas gametophytic plants had the highest frequency values during the dry season. These results were most likely a result of fluctuations in rainfall and related changes in current velocity. Some characteristics of this population can be viewed as probable adaptations to high current velocities: the mucilaginous layer around plants that reduces drag; potential increase in fertilization by the elongate and plentiful trichogynes and abundant dome-shaped structures producing several gametophytes.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.