267 resultados para Materiais piezolétricos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductivity was discovered by the dutch physicist Heike Kamerlingh Onnes (1853

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of optoelectronic devices requires the employment of at least one transparent electrode. Usually, commercially transparent electrodes have been made by deposition of indium tin oxide (ITO) films by RF-Sputtering technique. These commercial electrodes have sheet resistance of about 100 Ω/sq and optical transmittance of 77% at the wavelength of 550 nm. The poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) is an alternative material to fabricate transparent electrodes due to its high conductivity (about 600 S/cm) and solubility in water. Soluble conductive materials exhibits advantages for processing of electrode layers, however there is a disadvantage during devices fabrication once materials with the same solvent of the electrode material cannot be coated one over the other. Alternatively, organic/Silica hybrid materials prepared by sol-gel process allow producing bulks and films with high chemical durability. In order to obtain transparent electrodes with high chemical durability, we introduced a blended material comprising the high UV-VIS transparency of organic/Silica sol-gel material and a high conductivity polymer PEDOT:PSS. The organic/Silica sol was obtained using two different molar concentrations (1:1 and 4:1), of tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTS). Amounts of PEDOT:PSS solutions were added to the sol material, resulting in different weight fractions of sol and polymer. G:T/P:P were deposit onto glass substrates by spray-coating. In order to perform electrical characterization of the blended material, gold electrodes were thermally evaporated onto the films. The electrical characterization was performed using a Keithley 2410 source/meter unity and the optical characterization, using a Cary50 UV-Vis spectrophotometer. The absorption coefficient and electric conductivity of the different compositions blends, as function of the PEDOT:PSS concentration, were...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the apical sealing ability and the marginal adaptation of five dental materials used in retrofillings or applied to the bevelled root surface. One hundred and forty extracted single rooted human teeth were used, divided into seven groups of twenty each. ln the first, second, third and fourth groups, the teeth were apicoectomized, submitted to cavity preparations and retrofilled with one of the following materiais: zinc free silver amalgam, a dentin bonding system plus composite resin, a glass ionomer cement ora compomer. In the fifth, sixth and seventh groups, the teeth were apicoectomized and capped on the bevelled root surface with one of the following materiais: a dentin bonding system plus composite resin, a glass ionomer cement or a compomer. Two specimens of each experimental group were evaluated for the marginal adaptation using scanning electron microscopy. The remaining 126 specimens were immersed in 2% methylene blue dye, stored for one week at 37ºC and the infiltration was evaluated with a stereomicroscope. The results showed that the glass ionomer cement presented the lowest values of marginal infiltration when used as retrofilling material, with a significant statistical difference when compared with the others tested materials. When used as apical capping, the glass ionomer cement and the compomer were equivalent and significantly better than the dentin bonding system plus composite resin. Using scanning electron microscopy, all the materials showed some slight adjustment problem. ln the retrofilling, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin, while the largest were observed with the glass ionomer cement and zinc free silver amalgam. ln the apical capping, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin and ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB