436 resultados para Hydrogen peroxide thermal analysis
Resumo:
The preparation and thermal decomposition ammonium selenate and calcium and beryllium selenates have been reported previously. However, there are not any information in the literature concerning the thermal decomposition of double selenates of calcium, of beryllium and ammonium. Thermogravimetry (TG), Differential Thermal Analysis (DTA) were used in the studies and characterisation of these compounds.
Resumo:
Solid-state M-4-Cl-BP compounds, where M stands for bivalent Mg, Ca, Sr, Ba and 4-Cl-BP is 4-chlorobenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to informations about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes.
Resumo:
Xerogels were prepared from zirconium, barium, aluminum, lanthanum and lithium acetates, corresponding to a Li containing ZBLA composition. The study of their thermal properties (DSC, TG/DTG, FT-IR) showed that they might be used as chemically stable precursors in the preparation of fluoride glasses. Hydrofluoric acid in solution was chosen as a mild fluorinating agent. This newly proposed technique of fluorinating allowed to obtain high quality ZBLALi glass which presents the advantage of higher thermal stability and homogeneity in comparison with the glass obtained using individual commercial fluorides.
Resumo:
This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L-1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 mu mol L-1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L-1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 degrees C) or diluted. The method showed no interference of Cl- (0.2-1.3 mmol L-1), NO3- (0.3-1.0 mmol L-1), Fe3+, (0.2-1.2 mmol L-1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L-1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Solid-state Ln-4-MeO-Bz compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, phase transition, coordination mode, structure, thermal behaviour and thermal decomposition of the isolated compounds. The phase transition observed in the some compounds has been reported for the first time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.
Resumo:
The present work investigates the influence of milling and calcination atmosphere on the thermal decomposition of SrTiO3 powder precursors. Both pure and neodymium-modified SrTiO3 samples were studied. Milling did not significantly influence numerical mass loss value, but reduced the number of decomposition steps, modifying the profiles of the TG and DTA curves. on the other hand, milling increases the amount of energy liberated by the system upon combustion of organic matter. It was also observed that the milling process, associated to the calcination in an oxygen atmosphere, considerably decreases the amount of organic matter and increases the final mass loss temperature.
Resumo:
Solid state M-4-Me-BP compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn, Pb and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterise and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)-ethylenediaminetetraacetate complex. Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E=172.4 +/- 9.7 and 205.3 +/- 12.8 kJ mol(-1), and pre-exponential factor: logA = 16.38 +/- 0.84 and 18.96 +/- 1.21 min(-1) at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively.From E and logA values, Dollimore and Malek methods could be applied suggesting PT (Prout-Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.
Resumo:
This work describes the synthesis, IR and UV-Vis spectroscopic characterization as well the thermal behavior of the [NiCl2(HIPz)(4)]center dot C3H6O (1), [Ni(H2O)(2)(HIPz)(4)](NO3)(2) (2), [Ni(NCS)(2)(HIPz)(4)] (3) and [Ni(N-3)(2)(HIPz)(4)] (4) (HIPz = 4-iodopyrazole) pyrazolyl complexes. TG experiments reveal that the compounds 1-4 undergo thermal decomposition in three or four mass loss steps yielding NiO as final residue, which was identified by X-ray powder diffraction.
Resumo:
Purpose: To evaluate the effect of various bleaching agents on the cemento-enamel junction (CEJ) of human teeth by scanning electron microscopy (SEM) analysis. Methods: 30 intact teeth were selected and longitudinally sectioned, yielding 60 specimens. Thirty specimens served as controls; the other 30 were divided into six groups with five specimens each (n= 5) and bleached according to six protocols (Group 1: External bleaching with 10% carbamide peroxide; Group 2: External bleaching with 35% hydrogen peroxide; Group 3: External bleaching with 35% hydrogen peroxide; Group 4: Internal/external bleaching with 35% hydrogen peroxide; Group 5: Internal/external bleaching with 35% hydrogen peroxide; and Group 6: Intracoronal bleaching with a paste of sodium perborate mixed with 9% hydrogen peroxide). After treatment the specimens were prepared and examined in a scanning electron microscope. Results: the bleaching agents used in this study caused morphological changes in the CEJ and increased dentin exposure.
Resumo:
Papain is a proteolytic enzyme with restricted applications due to its limited stability. Cyclodextrins are widely used in pharmaceutical formulations once they are able to form complexes with other molecules, improving their stability and bioavailability. The purpose of the present paper was to analyze complexes formed by papain/hydroxypropyl-beta-cyclodextrin and papain/beta-cyclodextrin by thermal analysis and cytotoxicity tests to verify their possible interactions and toxicological behavior. Complex solutions were prepared at different molar ratios and collected as a function of time to be lyophilized and analyzed. Results showed changes in endothermic events and cytotoxicity profiles. A complex formation for both complexes is observed; nevertheless, beta-cyclodextrin was able to change the enzyme characteristics more efficiently.
Resumo:
The hydrated basis carbonates of lanthanides and yttrium were prepared by precipitation from homogeneous solution via the hydrolysis of urea, without the addition of an auxiliary anion. Thermogravimetry, derivative thermogravimetry (TG-DTG), and differential thermal analysis (DTA) have been used in the study of these compounds in CO2 atmosphere. The results lead to the composition and thermal stability of the studied compounds, and also to a comparative study with reported results in air atmosphere.