228 resultados para Ceramic joining
Resumo:
This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the discovery of YBaCuO, experiments have shown that its superconducting properties are strongly affected by the oxygen content. More recently, anelastic relaxation measurements in La2CuO4+δ, showed that the decrease in the oxygen content can be related to two events. One is the decrease in mobility between two adjacent CuO planes, and the other is the increase in the number of tilting patterns of the CuO6 octahedra. In the case of the bismuth-based ceramic, it is known that the oxygen content, within some limits, does not affect its superconducting properties. In order to evaluate the mobility and the effect of the oxygen content on this material we have prepared BSCCO ceramic and tested regarding its internal friction and electrical resistivity as a function of the temperature while the oxygen content was being reduced by a sequence of vacuum annelaing at 620 K. The samples were prepared in the Bi:Sr:Ca:Cu = 2212 and 2223 proportion, using powder obtained by the sol-gel route and conventional solid state reaction. The anelastic relaxation measurements were performed using a torsion pendulum operating with frequency about 15-35 Hz between 77 to 700 K. The diffraction pattern of the as sintered and the vacuum annealed material were also presented. The results have shown complex anelastic relaxation structures that were associated to the jump of interstitial oxygen atoms between two adjacent CuO planes. The vacuum annealing showed to be deleterious to the critical temperature of the superconducting ceramic.