261 resultados para mechanical squeezing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycled polymer matrix composites reinforced with wood flour can be a viable alternative for the replacement of wood and virgin polymers in materials used in floors, door frames, windows and external cladding. The objective of this research was to determine some physical and mechanical parameters of composite made with Pinus taeda and elliottii wood flour (WF) and recycled polypropylene (PP), without the use of compatibilizers or additives. The composites were separated into four traits, namely 100% PP, 90% PP with 10%, WF 80% PP with 20% WF and 70 % PP with 30% WF. The characterization of the composite followed the standards ASTM D-638-10, ASTM D256-00, ASTM D570 -98, ASTM D1238 -10 and ASTM G 155-05, it was also employed the surface analysis by scanning electron microscopy. The dimensional stability tests showed satisfactory results. Even the composite with a higher percentage of wood flour (30%) had a flow index of 10 MFI, considered compatible with that observed for PP (polypropylene) virgin by standard ASTM D 1238-10. The inclusion of wood flour (FM) afforded composites with good mechanical characteristics which can be applied in manufacture of different materials, specifically employed outdoors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcific aortic valve disease (CAVD) is a chronic disorder characterized by an abnormal mineralization of the leaflets, which is accelerated in bicuspid aortic valve (BAV). It is suspected that mechanical strain may promote/enhance mineralization of the aortic valve. However, the effect of mechanical strain and the involved pathways during mineralization of the aortic valve remains largely unknown. Valve interstitial cells (VICs) were isolated and studied under strain conditions. Human bicuspid aortic valves were examined as a model relevant to increase mechanical strain. Cyclic strain increased mineralization of VICs by several-fold. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses revealed that mechanical strain promoted the formation of mineralized spheroid microparticles, which coalesced into larger structure at the surface of apoptotic VICs. Apoptosis and mineralization were closely associated with expression of ENPP1. Inhibition of ENPP1 greatly reduced mineralization of VIC cultures. Through several lines of evidence we showed that mechanical strain promoted the export of ENPP1-containing vesicles to the plasma membrane through a RhoA/ROCK pathway. Studies conducted in human BAV revealed the presence of spheroid mineralized structures along with the expression of ENPP1 in areas of high mechanical strain. Mechanical strain promotes the production and accumulation of spheroid mineralized microparticles by VICs, which may represent one important underlying mechanism involved in aortic valve mineralization. RhoA/ROCK-mediated export of ENPP1 to the plasma membrane promotes strain-induced mineralization of VICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript describes the use of a tooth indicated for extraction due
to orthodontic reasons as an anchorage aid to receive undesirable side effects caused by orthodontic uprighting of a contralateral molar tooth. The mandibular right second molar was mesially tipped as a result of loss of the adjacent first molar. Since the treatment plan involved extraction of the mandibular left first premolar, undesirable side effects associated with the molar uprighting movement were transferred to this tooth. Once the second molar was vertical, the premolar was extracted and the treatment continued. The results suggest that treatment time can be reduced if undesirable orthodontic mechanical side effects can be directed to a tooth whose extraction is indicated.