514 resultados para atributos químicos e físicos
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
The effects on soil chemical properties brought about by cover crops vary considerably. This study was conducted to evaluate nutrient uptake by five cover crops used for grain, seed and forage production at different seed densities per hectare, as well as uptake by spontaneous vegetation, and their effect on the chemical properties of two Oxisols when grown in rotation with soybean and corn. The experiments were set up in Votuporanga, SP, Brazil and Selvíria, MS, Brazil in March 2008 after conventional soil tillage. A randomized complete block experimental design was used with four replications with the following cover crops at different seed densities: Sorghum bicolor at 6, 7 and 8 kg ha-1; Pennisetum americanum at 10, 15 and 20 kg ha-1; Sorghum sudanense at 12, 15 and 18 kg ha-1; hybrid of Sorghum bicolor with Sorghum sudanense at 8, 9 and 10 kg ha-1; and Urochloa ruziziensis at 8, 12 and 16 kg ha-1. We also used a spontaneous vegetation control. After management of the cover crops, in the first year of study, soybean was sown in no-tillage system and, in the second year, corn was sown, also in a no-tillage system. We evaluated the dry matter yield of different cover crops, nutrient uptake by the cover crops, and the chemical changes in the soil. It was found that in clayey soils with high aluminum content, as in Selvíria, sudan grass at a seed density of 18 kg ha-1, and sorghum at a seed density of 6 kg ha-1, in combination with liming, contributed to reduction of aluminum content and high potential acidity and an increase in base saturation. The different seed densities of each cover crop did not affect the dry matter yield of the cover crop itself, but affected nitrogen uptake of the hybrid Sorghum bicolor with Sorghum sudanense at a seed density of 10 kg ha-1, with lower uptake than at a seed density of 8 kg ha-1. Seed density also affected the organic matter content in the soil with sudan grass, with the seed density of 15 kg ha-1 providing more organic matter content than a seed density of 18 kg ha-1.
Resumo:
Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.
Resumo:
O trabalho foi conduzido em área de expansão de cana-de-açúcar da Usina Vale do Paraná, no município de Suzanápolis - SP, na região do noroeste paulista. Foi utilizada a variedade de cana RB92-5345, espaçamento de 1,5 m entre linhas, em ARGISSOLO VERMELHO. O trabalho objetivou avaliar a produtividade em cana-planta e 1ª cana-soca e alguns atributos químicos de solo, em função dos métodos de preparo do solo e aplicação ou não de gesso. O delineamento experimental utilizado foi o de blocos ao acaso, com seis tratamentos, fatorial 3x2, e seis repetições. Os tratamentos principais foram preparos de solo com três equipamentos: arado de aivecas, escarificador e grade pesada, e dois tratamentos secundários com aplicação de 1 t ha-1 de gesso e sem gesso. Após cada colheita da cana, o solo foi caracterizado quanto aos indicadores de fertilidade nas camadas de 0,0-0,15; 0,15-0,30 e 0,30-0,45 m. As diferenças dos atributos químicos do solo, devido aos métodos de preparo ocorridas na cana-planta, não perduraram até a colheita da 1ª cana-soca e também não influenciaram na produtividade da cultura. A gessagem proporcionou maiores valores de ATR e produtividade de TCH, para cana-planta e 1ª cana-soca, respectivamente, confirmando a hipótese inicial.