288 resultados para Ventiladores mecânicos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,25Cr-1Mo alloy steels are widely used in petrochemical plant equipments working in high temperature conditions because of their good mechanical proprieties in these conditions. Although, when exposed for a long time at high temperature, in the rage of 343 °C to 593 °C, may present the temper embrittlement phenomenon. The component named stripper of assembly converter of fluid catalytic cracking unit (UFCC) of studied plant is manufactured using this material, which is subject to temper embrittlement. The phenomenon of temper embrittlement refers to progressive lose of toughness, making the material brittle. With embrittlement, equipaments manufactured with this material are under risks to suffer brittle fracture in the cool down and start-up situations of them, which can cause catastrophic failures. By this reason, this research studies presence of temper ebrittlement phenomenon on this material. To verify the toughness of the material is conventionally used charpy V-notch test. However, this test requires the removing of samples of the material to make specimens. This fact becomes critical when talk about structural components of an equipment. So, this research also studies a non-destructive test that can be executes in-situ, known as instrumented indentation, as an alternative detection of the phenomenon at the component stripper, by comparative of the mechanical proprieties obtained by conventional tests in similar samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Products derived from wood or engineered products are becoming interesting alternatives to the replacement of solid wood in various applications, from structural components to the furniture industry and packaging. Among these products, there are panels built by strands, particles and fibers, each one having their particular characteristics and potential of use. Since the different types of panels are produced, waste generation is part of the process, and that more technological it is, it still generates losses of raw materials. Based on the need for rational use of raw materials and using almost full of industrially processed wood, It arises the proposal of this work, which seeks to use waste from the lamination, like pieces of strands, broken strands, strands rough, cracked strands to produce panels with structural characteristics of the OSL panel (Oriented Strand Lumber), LSL (Laminated Strand Lumber) and OSB (Oriented Strand Lumber). Besides the use of waste, this paper seeks an alternative to the use of the adhesive, because the industry uses formaldehyde-based adhesives, which over the press, they emit large amounts of formaldehyde, which is very aggressive to humans and environment. The panels made with polyurethane resin based on castor oil and hot-pressed were characterized by physical and mechanical tests according to specifications of European Standard (EN). High values of tensile strength, elastic modulus and density were found in the results of tests. Adding to stable values of swelling and moisture content, the panel studied adds attractive features to the panel market, especially in the civil construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum alloys are widely used in industry, because they combine different mechanical properties according to the alloying elements used in addition to thermal and mechanical treatments performed, resulting in materials with good weight/resistance relation. The 7XXX series alloys are worked heat treatable alloys commonly used in the aerospace industry, especially due to their high mechanical properties obtained after aging heat treatment, which increases the interest around 7075 alloy. Some studies with alloys which can be aged show that it is possible that cold word processes affect the results of aging. Thus, this study was intended to verify the influence of the aging process of AA 7075 alloy. There were three routes of aging with specimens previously treated thermally. In the first route T6 treatment was performed with a annealed specimen and other in solid solution. The second was the natural aging in a annealed specimen. In the last route was done aging by steps with a annealed specimen and other in solid solution with the intention to reduce the effects of natural aging. The results show that the routes 1 and 3 had similar hardness for all the samples, showing that the validity of Route 3 as an alternative and also the hardening did not affect the hardness at the end of the process, significantly reducing the time required for the highest hardness. Finally, natural aging was less effective in increasing hardness

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as objective to show the vibrational analysis as a method of predictive maintenance as an auxiliar procedure in the fail detection in equipments, most specifically in the rotative ones, and with that help the maintenance team to have conditions to foresee the right time to do the swap of the components of the systems, what would lead to failures. Knowing the exact moment the resources of people and money can be focused in the critic operations to the plant. This technic has been already studied for more then 30 years and was widely used in this work, not only as an equipment condition verification method, but also, after the equipment replacement, was used to prove that the new fan was operating under the best work conditions and with that maintenance could return to contol the vibration level of the equipment, not being necessary any kind of intervention

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the aeronautic industries has increased investment in areas of technological research aiming at materials that offer better performance, safety, weight reduction and fuel consumption. For this reason the most studied materials are polymeric materials, due to their higher mechanical strength and higher stiffness. This work evaluated characteristics of two composite laminates produced from the same process, but they differed only in regions where the resin was injected and the vacuum position. The composite laminates were SC-79 resin reinforced with glass fiber fabric (plain weave) processed via VARTM. For this reason the material was subjected to mechanical tests such as: tensile, and fatigue following standards ASTM D 3039 and ASTM D 3479, respectively. The latter was observed the S-N curve. It was performed the ultrassonic C-scan analysis to check impregnation of the fiber. Considering that the process was the same for the two laminates, with small variations in the injection and in vacum ports, it was expected to find similar characteristics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing demand for productivity and quality in companies has converged to a common point: reducing costs. In this context the present work aims at the development of a mechanical press which is designed for pressing polar hydrogenerators coils with salient pole in field facilitating the assembly of the poles in the plant, as well as reforms especially in hydrogenerators, reducing significantly the transport costs. With security in mind as well as reduced costs, a study was made of the materials to be used as it was applied a methodology for calculating the correct choice of safety factor to be used in the device. Through mechanical calculations were dimensioned critical items of the device as the diameter of the rods as well as the minimum thickness of the base of the device must have so that it does not break threaded shear in the region by applying the total load of traction on the risers implementation of the pressing. All compression loading device will be through the application of torque on the nuts of bolts in this way was defined by calculations the required torque for each nut so that you can reach the pressure specified in the design specifies. The modeling of the device was made using the INVENTOR™ program in conjunction with the program ANSYS ™. These programs have created designs in three dimensions, assembly and simulation of stress analysis in components of the device

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adhesives used in the production of engineered boards have been object of study over the years in order to improve the properties of the boards with less energy consumption, lower production costs and reduced environmental impact. In addition to that, process variables may affect the properties of the board. The present study aimed to characterize sheets of plywood, manufactured with two types of adhesives, under two different pressing conditions. The adhesives used for the study were Phenol-formaldehyde and Polyurethane castor oil based. The pressure of pressing was varied in a range from 75 to 160 Bar, in order to verify how they influence the physical and mechanical properties of the board. The tests performed resulted in a conclusion that shows that the moister content of the veneers interferes on the physical and mechanical tests. In general, boards produced with polyurethane resin showed superior physical and mechanical results; although the ones produced with phenol formaldehyde at a pressure of 75 Bar had always equal or higher values, compared to what is found in literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluated the mechanical properties of pieces of wood coming from the roof structure of a residence subject fire in the rural area of Itapeva/SP. The structure was built 25 years ago using wooden beams of the species Guarucaia (Peltophorum vogelianum), where the specimens were removed. The research methodology included qualitative evaluation of the samples, estimating the layer pyrolysis and carbonization of the wood, measuring of density and mechanical tests of compression parallel to grain, tension parallel to grain and shear. The mechanical properties of wood were analytically correlated with the layers carbonization and pyrolysis that are influenced by the temperature and time of fire; these values were estimated at 1000 °C and two hours for the case in question. The results indicate that the strength properties of degraded wood are different from a healthy wood. The level of thermodegradation, in general, can be measured by density, result in weight loss due to decomposition of the wooden components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is the production of two types of particle boards reconstructed MDP (Medium Density Particleboard), the first with the addition, in the inner layer of particles of impregnated paper, the ratios of 0%, 1%, 5% and 20 %. In the second type of panel MDP was inserted with blades of bamboo species Dendrocalumus giganteus as coatings and structural reinforcement. The MDP panel, used as a basis for both cases has the composition of three layers, two external particles with smaller particle size and an inner layer composed of particles of larger particle sizes. Assays were performed based on physical and mechanical NBR 14.810/2006 for the determination of the board density, thickness swelling, water absorption, moisture content, bending, tension parallel and perpendicular, and testing of particle sizes of the particles did not exists in standard references. The results were analyzed and compared the results of the commercial boards made from 100% eucalyptus, based on the limits specified by the ABNT NBR 14.810/2006. The values of the tests showed similar results indicating normative specifications in a positive way, the possibility of production of MDP with the use of waste paper impregnated. As for the panel with bamboo blades, the tests showed a mechanical performance far superior to MDP market, explaining the study and possible implementation of the bamboo for use where the MDP will suffer greater mechanical stress, such as doors, tops and benches tables

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human evolution has always been linked to personal or group needs. This statement is based on observations of the day to day. With time, we can now choose from among many excellent techniques and materials that can be employed in the construction of this part of the machinery so important to the functionality of machines and equipment. When we look at a machine, we see that this is usually designed by combining a set of pre-determined in your project. Among the many pieces that we can highlight one of them is of fundamental importance, the gear. Gears are an example of the mechanical devices used by the older man, and are currently the most important components in the transmission technique. This is responsible for transmitting rotary motion from one shaft to another. Gears are one of the best among the various means available for the transmission of motion. Gears are the most important components of modern technique of transmission. The main purpose of a transmission gear is precisely transmit torque and speed. The requirements have increased significantly due to pollution and energy conservation. Nowadays, gear transmissions are required to transmit high strength through all his life together with the high demand on performance and sound properties. An optimal design for the gear you need a set of the most modern fabrication machines and cutting tools. In the following work is studied on the manufacture of gears, making the monitoring of a case study of the try out the installation of a gear grinding machine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to study the thermal aspects involved in a liquid cooling system for processors, analyzing their competitiveness and efficiency across the fins and fan system usually used by personal computers, because electronic components become more potent and consequently current methods of cooling are becoming ineffective. The liquid cooling system and air cooling system have different heat transfer mechanisms that involve mainly convection and conduction heat transfer modes, and, furthermore, requires an analysis of fluid dynamics, which can evaluate the losses involved in the closed system, consisting in an exchanger heat pipe and water blocks in liquid cooling system or heat sink and turbo-axial fan in the air cooling system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large part of hydraulic hoses is produced on a mandrel. The mandrel has longer length and circular profile being produced by extrusion of polyamide polymer, which in this case is imported, then the process is depending on the import process, which entails high shipping costs and fees. This work studies the production of recycled mandrel, using the mandrel that is out of dimensional to produce hoses. After the production of recycled mandrel mechanical tensile and hardness were performed both in the natural and recycled mandrel to compare them. It was observed that recycled mandrel presents the tensile properties and hardness superior to natural mandrel. Thus, this work will directly impact the company`s business ultimately reducing costs, reducing waste and reducing environmental impacts