247 resultados para Paraventricular nucleus of the hypothalamus
Resumo:
The orbitofrontal cortex (OfC) is a heterogeneous prefrontal sector selectively connected with a wide constellation of other prefrontal, limbic, sensory and premotor areas. Among the limbic cortical connections, the ones with the bippocampus and parabippocampal cortex are particularly salient. Sensory cortices connected with the OfC include areas involved in olfactory, gustatory, somatosensory, auditory and visual processing. Subcortical structures with prominent OfC connections include the amygdala, numerous thalamic nuclei, the striatum, hypothalamus, periaqueductal gray matter, and biochemically specific cell groups in the basal forebrain and brainstem. Architectonic and connectional evidence supports parcellation of the OfC. The rostrally placed isocortical sector is mainly connected with isocortical areas, including sensory areas of the auditory, somatic and visual modalities, whereas the caudal non-isocortical sector is principally connected with non-isocortical areas, and, in the sensory domain, with olfactory and gustatory areas. The connections of the isocortical and non- isocortical orbital sectors with the amygdala, thalamus, striatum, hypotbalamus and periaqueductal gray matter are also specific. The medial sector of the OfC is selectively connected with the bippocampus, posterior parabippocampal cortex, posterior cingulate and retrosplenial areas, and area prostriata, while the lateral orbitofrontal sector is the most heavily connected with sensory areas of the gustatory, somatic and visual modalities, with premotor regions, and with the amygdala.
Resumo:
Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.
Resumo:
Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.
Resumo:
The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.
Resumo:
Suicidal altruism has been reported for some species of eusocial insects, in which the individual dies in defense of the society. The termites of the genus Ruptitermes are known for the suicidal behavior of the workers which liberate a sticky defensive secretion by body bursting. In the present paper it is given a new interpretation of the defense glands of Neotropical Ruptitermes based on the morphological analysis of three species collected at Rio Claro, SP, Brazil. Before the current study, the suicidal defensive behavior was attributed to the dehiscence of the salivary gland reservoirs. The defense or dehiscent glands of Neotropical Ruptitermes are pair structures rounded in shape that are independent of the salivary glands. The dehiscent glands consist of multiple secretory units that are kept together by thin connective tissue. Each secretory unit is composed of one cell generally with one peripheral nucleus and characteristic secretion. The three species studied here present some histological differences in the secretory units, probably related to the chemical composition of the secretion.
Resumo:
Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.
Resumo:
The nucleolus is a subcompartment of the nucleus and the site of ribosome biogenesis. During the mitotic and meiotic cell cycles, a disorganization and later reorganization of the nucleolar material occur, an event called nucleologenesis. In the spermatogenesis of mammals and other vertebrates, there is evidence of the disorganization of the nucleolus at the end of meiosis I, which supplies material for the cytoplasmic formation of an organelle called the chromatoid body (CB). The CB is a structure characteristic of spermatogenic cells and seems to be responsible for RNA metabolism in these cells and for some events of spermiogenesis, such as the formation of the acrosome, cellular communication between spermatids, and the formation of the spermatozoon middle piece and tail. The aim of this paper was to obtain information about the cytochemical and ultrastructural nature of the nucleolar cycle and the distribution of cytoplasmic RNAs in the seminiferous tubule cells of Rattus novergiucus, Mus musculus and Meriones unguiculatus. The testis was fixed in Bouin and Karnovsky solutions for conventional histological analysis and for cytochemical study that included: periodic acid-Schiff, hematoxylin-eosin, Feulgen reaction, silver-ion impregnation, Gomori's reticulin stain, toluidine blue, modified method of critical electrolyte concentration, and basic and acid fast green. The blocks of testis fixed in glutaraldehyde were used for ultrastructural analysis by transmission electron microscopy. Ultrathin sections were double-stained with uranyl acetate and lead citrate. All the techniques used provided information on the origin and function of the CB in the spermatogenic cells. Therefore, considering the persistence of the RNA and nucleolar ribonucleoproteins during spermatogenesis of Rattus novergicus, Mus musculus and Meriones unguiculatus, our findings corroborate the statement that these molecular complexes are very important in the spermiogenesis phases. It can be suggested that these ribonucleoprotein corpuscles (chromatoid bodies) are of nuclear origin and have a role in the successive series of events that occur in the formation of the spermatozoon. Furthermore, these results reinforce the conservation of the mechanisms involved in preserving necessary levels of protein stocks in different stages of cell differentiation, from spermatid to spermatozoon, in these rodent species. ©FUNPEC-RP.
Resumo:
Objective To compare exfoliative cytology from the oral mucosa of smokers and nonsmokers, with emphasis on proliferative activity. Methods Exfoliative cytology specimens were obtained from clinical normal mucosa from the lateral border of the tongue in 30 nonsmokers and 30 smokers ranging in age from 40 to 70 years of age, who were seen at the Heart Institute's Patient Center and the Smoking Cessation Program of the University Hospital, University of São Paulo Medical School (InCor-HCFMUSP). The cytologic specimens were evaluated by Papanicolaou staining and AgNOR quantification in order to evaluate the presence of cytological alterations suggestive of inflammation, dysplasia, keratinization, and proliferative activity of epithelial cells. Results Only Papanicolaou Class I and Class II smears were observed. Inflammatory alterations were found in 90% of smokers and in 87% of nonsmokers. The number of AgNORs/nucleus differed significantly between smokers and nonsmokers (3.372 ± 0.375 versus 2.732 ± 0.236). Conclusions Within the limitations of this research, the results indicate higher proliferative activity in smoking patients compared to nonsmoking patients, even in the absence of clinical lesions. © The Author(s) 2008.
Resumo:
Craniopharyngiomas and germ cell tumors (GCT) may affect the pituitary-hypothalamic region during childhood. Although different in origin, their clinical and radiological features may be similar. In this article we present a 5-year-old girl with clinical and radiological findings (computer tomography calcification) that were initially considered as craniopharyngioma. However clinical outcome, blood and cerebral spinal fluid tumoral markers, and results from anatomopathology and immunohistochemistry disclosed a mixed GCT. This case report highlights that some clinical features and radiological findings of pituitary-hypothalamic tumors may be misdiagnosed as craniopharyngioma mainly when there is a mature teratoma with cartilaginous tissue differentiation. Copyright© ABE&M.
Resumo:
Neurospora crassa has been widely used as a model organism and contributed to the development of biochemistry and molecular biology by allowing the identification of many metabolic pathways and mechanisms responsible for gene regulation. Nuclear proteins are synthesized in the cytoplasm and need to be translocated to the nucleus to exert their functions which the importin-α receptor has a key role for the classical nuclear import pathway. In an attempt to get structural information of the nuclear transport process in N. crassa, we present herein the cloning, expression, purification and structural studies with N-terminally truncated IMPα from N. crassa (IMPα-Nc). Circular dichroism analysis revealed that the IMPα-Nc obtained is correctly folded and presents a high structural conservation compared to other importins-α. Dynamic light scattering, analytical size-exclusion chromatography experiments and molecular dynamics simulations indicated that the IMPα-Nc unbound to any ligand may present low stability in solution. The IMPα-Nc theoretical model displayed high similarity of its inner concave surface, which binds the cargo proteins containing the nuclear localization sequences, among IMPα from different species. However, the presence of non-conserved amino acids relatively close to the NLS binding region may influence the binding specificity of IMPα-Nc to cargo proteins. Copyright © 2012 Bentham Science Publishers. All Rights Reserved.
Resumo:
Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 μM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 μM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent. The authors thank Profa Dra Eiko Nakagawa Itano for the use the spectrophotometer and the Conselho Nacional para o Desenvolvimento Científico e Tecnológico for master's scholarships to P. M. Cândido-Bacani and grants to T. R. Calvo, W. Vilegas, E. A. Varanda and I. M. S. Cólus. The Conselho Nacional para o Desenvolvimento Científico e Tecnológico provided funding for this study. © 2013 Taylor & Francis Group, LLC.
Resumo:
We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.
Resumo:
Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.
Resumo:
Studies on the molecular bases of the neurotoxic action of acaricides are found in the literature; but there are no studies of this action on the nervous system of ticks at the cellular level. The present study describes the morphological and cytochemical changes in the synganglion of Rhipicephalus sanguineus semi-engorged females exposed to different concentrations of permethrin, a pyrethroid with recognized neurotoxic action. Permethrin induced the degeneration of the synganglion through a process of apoptosis involving autophagy, characterized by the condensation and margination of the chromatin, formation of blebs in the nuclear envelope and fragmentation of the nucleus, loss of shape of neural cells and integrity of cellular membrane, cytoplasmic shrinkage, and lower levels of acid phosphatase in the nervous tissue as the concentration of permethrin increased. This study provided further evidence of the neurotoxic action of permethrin, which impairs the metabolism of R. sanguineus nervous systems, and consequently the physiology of other systems, dependent on the neural control. These results provide cytochemical and histological confirmation of the neurotoxic action of permethrin, previously inferred from molecular and tick behavioral evidence. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)