277 resultados para Ligas de niquel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The approach of the subject matter in this work relies on the fact that the reliability of methods for performance analysis of materials proves critical for the result. This work focused on the development and presentation of the methodology for lifting probability curves for fatigue test (SN) according to standard E739, this focus is justified by the fact that the results in fatigue test show considerable dispersion making it difficult to reading and interpretation of data, this dispersion arises because the phenomenon of rupture is strongly influenced by internal characteristics of the material, we can then have much data ranging from test to test. Thus we set out originally for a brief study of aluminum alloys in question, as well as the treatments to which they were subjected. We also studied the behavior of materials when subjected to cyclic loading, which configures process of fatigue failure, and even fatigue test method in question. This statistical analysis is based on the ASTM E739 standard, so its contents was studied in detail so that we could present in detail the methodology and raise SN curves for different aluminum alloy 7012 subjected to fatigue test. Data were collected from tests conducted in the department of materials from two samples of aluminum alloy 7012 solubilized and precipitated by different time intervals and assayed temperature fatigue-type traction-compression, these data were then analyzed and used to survey curves using the base as E739. After lifting the curve analyzed the characteristics of the test samples and their correlation with the test results. We confirmed the effectiveness of the method of statistical analysis by ASME E739, which allowed the reading of data without this method would be very difficult to have a reading and comparison of the results for the two types... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing technological innovation and demand for materials with better properties boosts research into new materials and new alloys. To do so, aluminum alloys are being developed, among them the AA7075-T6, having many applications in aerospace and military industries, machinery and equipment, molds for plastic injection and structures. To study and understand the properties, characteristics and especially the microstructure of the material, the metallographic preparation is essential. This paper presents new methodologies to achieve the metallography of samples of scrap alloy AA7075-T6, with emphasis on methods of polishing. For the five samples, the best results were those with specific grinding, the samples only going down on the sander. For polishing, the most effective method so far has been using the polishing cloth 16.3, of ATM enterprise, solution of diamond 3 μm, solution of diamond 1 μm, and colloidal solution of OP-S. For the etching, the reactive agent used was phosphoric acid (H3PO4) 85% P.A., as 90% in the proportion of distilled water to 10% acid. The best results were obtained in the attacks of 300 and 240 seconds, revealing the grain boundaries in most areas. Methodologies need more studies and more tests, but the results have proved to be satisfactory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium and its alloys have been used for biomedical applications due their excellent properties such as high corrosion resistance, biocompatibility and mechanical properites. In this study, microstructural and mechanical properties of Ti-30Ta alloy was evaluated during its processing. Ti-30Ta alloy ingots were produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Its melting was realized in arc melting furnace in an argon atmosphere. After homogenizing at 1200ºC, ingots were cold worked by swaging. Samples with 13 mm in diameter were obtained. They were forging at the reduction ratios of 15%. After deformation, microstructure was evaluated by optical microscopy in each condition. Also, Vickers microhardness of samples was measured and phase constitution was evaluated using XRD analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The macrostructure of an alloy solidification in the raw state is of utmost importance due to its influence on mechanical properties. A structure showing columnar grains is generally undesirable in most applications of cast products and grain refining aims to suppress the formation of these grains and get a fine-grained equiaxed structure that improves the supply of liquid metal and the mechanical properties, as yield strength and tensile strength limit, as well as the tendency of formation of hot cracks. The type and size of grains formed are determined by chemical composition, cooling rate and the use of inoculum for grain refining. Titanium and boron are the major refiners in the aluminum industry and can be added to the molten metal in the form of alloys such as Al-Ti, Al-Ti-B or Al-B. In this paper we will discuss the information obtained from cooling curves and first derivative of the cooling curve to obtain the thermal parameters that influence the process of grain refining alloy AA 356.0

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The welding process in industrial piping is still the most effective way to ensure the durability and quality of the wide range of industrial process, although because of the high demand for energy and quality of the produced products, the piping has been constantly tested for high pressure applications and still high temperature. The welding method analyzed is the TIG (Tungsten Inert Gas) welding or GTAW (Gas-Shielded Tungsten Arc Welding), which ones have as principal feature the utilization of a not consumable tungsten electrode in the torch extremity , in this process is necessary a protective atmosphere of inert gas. The welding TIG advantage is the obtaining of a welded seam clean and with quality for not has slag after the welding. This work has as objective show the variability in the carbon steel piping welding parameters and by the tests in four proof bodies will be shown the influence of the variation of the welding methods in a welded seam. The tests will vary since the piece to be welded preparation, till penetrating liquid tests, welding macrography, welding x-ray and traction tests. Even been a clean and with quality welding is necessary a final inspection in the seam welded looking for defects almost inevitable resulted of the welded process, the obtained results have the objective of indicate and minimize the defects to ensure quality and durability of the welded seam

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is an essential factor in maintaining the vital functions of living beings. We have observed a growing commitment of quality, are due to pollution from many sources and even entire watersheds, whether for industrial waste, sewage, or for substances used in farming such as pesticides, herbicides and fertilizers. Nickel is the 24th most abundant element on earth, is a heavy metal that, in the form of chloride, is a proven genotoxic and mutagenic. Due to its industrial use, there was considerable increase of its concentration in surface sediments. Fish combine characteristics that make them excellent experimental models for aquatic toxicology studies, which are particularly usable as warn about the potential danger of chemicals or the possibility of environmental pollution. Due to impaired water quality and the few published studies relating the nickel with the tissue change, this study aimed at assessing the consequences of the presence of nickel in the aquatic environment. For this analysis, we used individuals of Oreochromis niloticus, exposed for 96 hours at three different concentrations of nickel dissolved in water compared to a control group. After exposure, the gills were removed and these were analyzed by ultramorphological, histological and histochemical analysis. The results indicate that all concentrations used in the experiment altered the histophysiology of exposed individuals. We observed the following changes: rupture of paviment cells, thus resulting in bleeding, loss of microridges surface of these cells and epithelial loss in the gills of all animals in all treatments with nickel chloride, the histochemical analysis showed non-proliferation of chloride cells. However, there was a dose-dependent increase of mucus cells in all animals. Therefore, nickel has toxic potential to fish, from the smallest concentration used up to twice as permitted by law, indicating... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AA356 alloy is an alloy widely used in the automotive industry and aerospace due to its excellent mechanical properties. Refining the structure of eutectic silicon aluminum alloys is a fairly common practice in the foundry through treatment known as modification. This can be achieved by modifying agent adding chemicals such as contained in groups I and IIa of the periodic table and rare earths (europium, céreioi, praseodymium, neodymium, etc.). Has the ability to modify the structure of the eutectic, but only sodium and strontium produce an action modifier strong when used in low concentrations. The modifying effect of the shafts turn silicon into a fibrous form and branched surrounded by metallic matrix in the form of a composite structure that has the highest limit of tensile strength, ductility and machinability. In this work will be obtained ingots with and without the modifier type Al-10% Sr, made in sand molds and are generated and analyzed cooling curves and also the study of the macrostructure and microstructure of the solidified material. It was found that by adding the Al-Sr made shorten the solidification time and lower the grain size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the study on the application of the electrolytic plasma for surface treatment of aluminum. A bibliographical study on the material of interest was preliminarily performed and later designed and built an electrolytic cell, including the excitation source. Unlike conventional electrolysis process, the plasma assisted carry on in the non-linear region of characteristic current/voltage curve. Therefore it requires for the on set of the process that the power supply operates on harder conditions than those on high current process. The plasma produced during the present investigation has temperatures in the range o 6,0.10 3 -7,0 .10 3 K, well above those found in conventional chemical process. It also shows a particular dynamic to promote changes on surface and to produce new materials. The plasma is generated by microdischarge in vapor or gas bubbles involved in physic-chemical processes in electrode regions of the electrolytic cell. The electrode material was the aluminum (7075). The Process Electrolytic Plasma Processing (EPP) is sensitive to various parameters such as operating voltage, current density, electrolyte, concentration of electrolyte, geometry of reactor, temperature of electrolytic solution and dynamic of the fluid in the cell. The experiments were carried on in order to find parameters for a stable abd steady operation. The choice for the electrolytic was silicate/alkali solution in various concentrations to operate in various voltage as well. Plasma was produced on negative (cathode) and positive (anode) electrode, in specific conditions. A stable operation on the cathode process was obtained with low concentration of the electrolytic in aqueous solution, current density around 250V effective voltage. For the evolution of plasma in anodic process it was required higher concentrations and higher... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that gymnastics and sports, for the most part, were made by men for men, and its practice was almost exclusively for males, especially until the First World War. Vestiges of this strong male influence in sports still remain to this day, especially in leadership positions. It is clear that most sports, both male and female, are mostly coached by men. Thus, this study aimed to examine, through quantiqualitative research, the number of women and men who lead male and female volleyball, basketball and soccer elite teams, participating in the most important national championships, and the number of men and women graduated in physical education courses in Brazil in order to check a possible relationship between the low number of women working as a coach and the percentage of women graduated in physical education. For the acquisition of data, Internet searches were made on the sites of confederations, leagues and sports leagues selected for the study, and on the site of the National Institute of Educational Studies Anísio Teixeira (INEP). It was identified that the total number of graduates from 1995 to 2008 was 192,707, with 99,869 men and 92,838 women, showing a balance between these numbers, which did not happen with the numbers of male and female coaches. The data indicated that no women worked as a coach in male and female volleyball teams in the seasons 2006 to 2010, no woman worked as a coach in the male basketball teams in the seasons from 2000 to 2010, and only an average of 1.67 women led female basketball teams in the seasons 1998 to 2010, and no woman has ever worked as a coach for male soccer teams, while only an average of 2.67 women acted as a coach of female soccer teams. The difference between the number of men and women graduated in physical education is small and does not justify the low ...(Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to analyze the cooling curves, micro and macrograph alloy Al-1 %Si without the addition of strontium modifier and with the addition of the same. One of the ways of improving mechanical properties of alloy Al -Si is through the modification process. For the experiments two billets of the alloy Al-1%Si cast iron mold in a billet with addition of 0.02% strontium by weight, and the other billet without the addition of modifier were fused. In the solidification process of billet temperature was monitored and recorded every second for later plotting in Origin 8 program and analyzes the cooling curves obtained. The billets were cut and passed by grinding and polishing to perform the macrograph and micrographs. The results concerning the macrograph indicated that billet without the addition of Strontium particle size obtained was more refined than the billet where the strontium modifier was added. Regarding the micrograph, photos stemmed from the optical microscope didn´t show the expected modification effect by the addition of Strontium. This suggests that the low amount of silicon (1 %) present in the alloy used in this study interfered in the change process, because according to the literature review, Strontium 0.022 % by weight is sufficient to fully modify an alloy with 7% Silicon. The results from the cooling curve showed that both the eutectic temperature and the solidification time remained unchanged with the addition of strontium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a study on the materials selections and processes for the manufacture of aircraft and showing a methodology to reduce the manufacturing cost. The DFMA can be understood as a methodology that aims at reducing manufacturing and assembly costs and coupled with the increase of product quality through design simplifications. The most commonly material used in the manufacture of aircraft is aluminum alloys due to these possess great structural strength, good elasticity, and being stainless having a low specific weight (about 1/3 that of steel), reducing the weight of the aircraft. A case study in which an operation in the process of verifying the quality was generating unnecessary costs time / man for the company was also developed. The problem solution was simple, just removing the attachment process. It was found that the DFMA methodology is extremely important for the simplification of processes and projects, contributing to the reduction of manufacturing costs of aircraft

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therebar of aluminum 1350 AA produced by CBA are used inthe manufacture of wires and cables for electric power transmission, which marketshows increasingly favorableto aluminum due to itslow densityand high electrical conductivity, but to ensure that this materialmeets all specifications of projectsfor electricity transmission, it must have homogeneity in the chemicaland mechanicalproperties.One of the points of improvement in the process of rod production isreducing the high variation of the limitof tensile strengthalong the coils, therefore, this work seeks a better understanding of the factors that significantly influence the mechanical properties of rebar, specifically assessing the influence oftemperatureat the output of the coils, which can cause a recovery effect on the material andif thereare relevantdifferences between the two modes of rebar production: auto and manual.Samples of six coils have been specifically produced forthis study, which weresubsequently subjected to different annealing temperatures for one hour and ten minutes, similar to what occurs in the output of the coil from the machine. The tensile tests showed that aluminum 1350 AA is significantly influenced by temperature, whose behavior was very similar to that presented in the literature. It was found that the phenomenon of recovery occurred more significantly at high temperatures. Through the optical electron microscope Zeiss, 18 surface maps were made with 100x magnification for each sample in different conditions and the images were analyzed using entropy and fractal dimension, aiming to relate the condition of surface hardening on mechanical property of the samples in that condition. The results showed that these methods can be applied, provided they do not have any kind of imperfection on the surface, once they can influence the results. The study concluded that a more efficient cooling is required in ... (Complete abstract click electronic access below)