330 resultados para Immediate implants
Resumo:
Aim: To evaluate the integration of implants installed at the interface of pristine and grafted tissue augmented with particulate autologous bone or deproteinized bovine bone mineral (DBBM), concomitantly with a collagen membrane. Material and methods: In 6 Labrador dogs, the distal root of 3P3 and 4P4 was endodontically treated and hemi-sected, and the mesial roots extracted concomitantly with the extraction of 2P2. The buccal bony walls were removed, and two box-shaped defects, one larger and one smaller, were created. After 3 months, flaps were elevated, and the defects were filled with particulate autologous bone or DBBM in the right and left side of the mandible, respectively. Collagen membranes were used to cover the grafted areas. Three months later, flaps were elevated, and a customized device was used as surgical guide to prepare the recipient sites at the interface between grafts and pristine bone. One implant was installed in each of the four defects. After 3 months, biopsies were harvested and ground sections prepared for histological evaluation. Results: The augmentation technique was effective at all sites and all the foreseen implants were installed. In the histological analysis, all implants were integrated in mature bone, at both the buccal and lingual aspects. The most coronal bone-to-implant contact and the top of the buccal bony crest were located at a similar distance between test and control implants. However, these distances were higher at the larger compared with the smaller defects. Especially in the large defect, residual particles of DBBM were found embedded into connective tissue and located outside the bony crest. Conclusions: Particulate autologous bone as well as DBBM particles used to augment horizontally the alveolar bony process allowed for the osseointegration of implants installed after 3 months of healing. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: To study the early sequential stages of osseointegration at implants installed in alveolar bony. Materials and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Implants were installed, and the flaps were sutured to allow a fully submerged healing. The timing of the installations in the left side of the mandible and of sacrifices were performed with a schedule that various observation periods to sacrifice from 5, 10, 20, and 30 days were available so that n = 6 was obtained per each healing period. Ground sections were prepared and analyzed. Results: Newly formed bone in contact with the implant surface was found after 10 days of healing and the percentage increased up to 50% after 1 month of healing. A higher percentage was found in the trabecular compared with the cortical bony compartment. Old bone decreased by about 50% during healing, being still present after 1 month (16%). The proportions of bone debris and bone particles were at 27% after 5 days and decreased during healing to 6% after 1 month. Conclusion: Osseointegration (new bone-to-implant contact) developed at various rates for cortical and trabecular compartments, respectively. In the trabecular region, mesenchymal cells were identified, subsequently developing into new bone in contact with the implant surface. In the cortical compartment, however, resorptive processes were observed throughout all periods of healing. The proportion of newly formed bone percentage was lower compared with that of the trabecular area. Old bone was still present after 1 month of healing in both compartments. Bone debris and small bone particles appeared to be involved in initial bone formation. © 2013 John Wiley & Sons A/S.
Resumo:
Objective: Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. Methods: Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. Results: Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. Conclusions: The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation. © 2012 John Wiley & Sons A/S.
Resumo:
Dental tissues have special characteristics, and its regenerative capacity is noteworthy. However, understanding the circumstances that lead to regeneration is challenging. In this study, the chronology of the healing process after immediate replantation of rat incisor teeth was examined by histological and immunohistochemical analyses within a 60-day period. Thirty-six male Wistar rats had their maxillary right incisors extracted and replanted after 15min in saline storage. The rats were sacrificed immediately 3, 7, 15, 28, and 60days after replantation. The histological analysis showed rupture of the periodontal ligament and formation of a blood clot, which started being replaced by a connective tissue after 3days. At 7days, the gingival mucosa epithelium was reinserted and areas of root resorption could be seen. At 15days, the periodontal ligament was repaired. At 3days, the pulp presented an absence of the odontoblast layer, which started being replaced by a connective tissue. This tissue suffered gradual calcification, filling the root canal at 28 and 60days. The root ends were closed. The immunohistochemical analysis revealed greater expression of OP, OPG, and RANK proteins in the initial periods (0 and 3days), while TRAP expression predominated at 28 and 60days (P<0.05). In conclusion, in delayed tooth replantation, there is great new bone formation activity in the earlier periods of the repair process, while a predominance of bone resorption and remodeling is observed in the more advanced periods. © 2012 John Wiley & Sons A/S.
Resumo:
Purpose: The purpose of this research was to analyze and measure, under optical microscopy, the hybrid layer thickness and resin tags length, as well as the microtensile bond strength of two conventional adhesive systems when applied to dry and moist dentinal substrate. Methods: Thirty-two extracted human molars were randomly distributed into four groups according to the adhesive systems (XP Bond and Prime&Bond 2.1) and moisture condition (dry and moist). In Groups I and II, XP adhesive system was applied on dry and moist dentin, respectively; while Groups III and IV received PB adhesive system, in the same way as was done in Groups I and II, respectively. After adhesive and restorative procedures, all specimens were sectioned along their long axes; one hemi-tooth sample was subjected to the microtensile bond strength test while the other was decalcified and serially sectioned into six micron thick slices and sequentially mounted on glass slides. These sections were stained by the Brown and Brenn method for posterior analysis and measurement of the hybrid layer and resin tags under a light microscope with a micrometric ocular 40/075. Results: Data were analyzed using two-way ANOVA and Tukey's test (α=0.05). For the variable hybrid layer thickness, XP showed no significant differences between dry and moist dentin (5.2 μm and 5.5 μm, respectively), but for PB, hybrid layer was significantly thicker for moist (4.0 μm) than for dry dentin (3.0 μm). For the variable resin tags length XP showed 17.9 μm length for dry dentin and 20.8 μm for moist dentin; PB 11.7 μm for dry and 12.69 μm for moist dentin;there was no significant differences between them, independent of the moisture condition. For the variable microtensile bond strength, XP showed 38.0 MPa for dry dentin and 44.5 MPa for moist dentin; and PB showed 22.7 MPa for dry dentin and 20.8 MPa for dry dentin no significant difference was observed between moist and dry dentin for XP (p=0.2) and PB (p=0.7), but XP was presented significantly higher bond strength values than PB in both moisture conditions (p=0.003 for dry and p=0.002 for moist). Conclusion: The two-step butanol-based etch-and-rinse adhesive XP Bond presented a superior behavior with regard to the hybrid layer thickness, length of resin tags and bond strength to dry and moist dentin substrates when compared with two-step acetone-based adhesive system Prime&Bond2.1. © 2013 Elsevier Ltd.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Metallic biomaterials are used to reinforce or to restore the form and function of hard tissues. Implants and prosthesis are used to replace shoulders, knees, hips and teeth. When these materials are inserted in bone several biological reactions happen. This process can be associated to surface properties (topography, roughness and surface energy). In this work, the influence of biomimetic surface treatment in the osseointegration of Ti-30Ta dental implants was evaluated. Ingots were obtained from titanium and tantalum by using an arc-melting furnace. They were submitted to heat treatment at 1,100°C for 1 h, cooled in water and cold worked by swaging. Then, screw-shaped implants (2.0 mm diameter by 2.5 mm length) were manufactured and they were implanted in a rat's femur. Animals were divided into two groups: untreated (control group) and treated (biomimetic surface treatment). They were sacrificed 30 days after implantation. For histological analysis, implants with surrounding tissue were removed and immersed in formaldehyde. Samples were embedded in polymethyl methacrylate and after polymerization, cut with a saw, polished and mounted on glass slides. The results obtained suggest that biomimetic surface treatment was able to promote an increase osseointegration on the surface of dental implants. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
The rehabilitation with oral implants is, without any doubt, a consecrated technique. But often we face situations of high bone atrophy where the conventional installation of dental implants is not possible. The posterior mandible, when severely resorbed, generally requires complex techniques to be rehabilitated with implants, such as the lateralization of the inferior alveolar nerve. As an option for these cases, this paper proposes the use of short implants for the rehabilitation of severely resorbed posterior mandible. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.
Resumo:
Rehabilitating atrophic maxilla poses many challenges. Reconstructive techniques that require sinus grafting are viable and acceptable; however, these techniques also are considered to be expensive, invasive, and time-consuming. Tilted implants anchored in distal areas using available bone have been reported as a less invasive and highly predictable treatment option. This article presents a case involving implant anchorage via tilted implants as an alternative technique to bone grafting procedures. Copyright © 2013 by the Academy of General Dentistry.
Resumo:
Purposes: The purposes of this study were to evaluate the influence of chronic stress (CS) on implant osseointegration and also to analyze whether alendronate (ALN) therapy could prevent these eventual stress-negative effects. Materials and Methods: Adult male Holtzmann rats were assigned to one of the four experimental groups: AL (ALN; 1mg/kg/week; n=12), ALS (ALN+CS; 1mg/kg/week; n=12), CTL (sterile physiological saline; n=12), or CTLS (sterile physiological saline+CS; n=12). After 58 days of drug therapy, the ALS and CTLS groups were exposed to CS, and 2 days later all animals underwent tibial implant installation. The animals were euthanized 28 days following the operative surgical procedure. Results: It was observed that the CTLS group presented an impairment of bone metabolism represented by lowest levels of bone-specific alkaline phosphatase and bone area fraction occupancy values. Furthermore, these animals presented a higher proportion of empty osteocytic lacunae. In contrast, the ALN therapy showed increased osseointegration and torque value parameters, regardless of stress exposition. Conclusions: Analysis of the data presented suggests that CS partially impairs the osseointegration of tibial implants and that ALN therapy is able to prevent these negative effects. © 2013 Wiley Periodicals, Inc.
Resumo:
The aim of the study was to evaluate mechanical behavior of implants inserted in three substrates, by measuring the pullout strength and the relative stiffness. 32 implants (Master Porous-Conexao, cylindrical, external hexagon, and surface treatment) were divided into 4 groups (n = 8): pig rib bone, polyurethane Synbone, polyurethane Nacional 40 PCF, and pinus wood. Implants were installed with the exact distance of 5 mm of another implant. The insertion torque (N·cm) was quantified using the digital Kratos torque meter and the pullout test (N) was performed by an axial traction force toward the long axis of the implant (2 min/mm) through mount implant devices attached to a piece adapted to a load cell of 200 Kg of a universal testing machine (Emic DL10000). Data of insertion torque and maximum pullout force were submitted to one-way ANOVA and Bonferroni tests (α = 0.05). Polyurethane Nacional 40 PCF and pinus wood showed the highest values of insertion torque and pullout force, with significant statistical difference (P < 0.05) with other groups. The analysis showed stiffness materials with the highest values for primary stability. © 2013 Nathalia Ferraz Oliscovicz et al.
Resumo:
Objective: To evaluate the correlations between clinical-radiographical aspects and histomorphometric-molecular parameters of endosseous dental implant sites in humans. Material and methods: The study sample consisted of bone implant sites from the jawbones of 32 volunteers, which were classified according to two different systems: (1) based only on periapical and panoramic images (PP); (2) as proposed by Lekholm & Zarb (L&Z). Bone biopsies were removed using trephine during the first drilling for implant placement. Samples were stained with haematoxylin-eosin (HE), and histomorphometric analysis was performed to obtain the following parameters: trabecular thickness (Tb.Th), trabecular number, bone volume density (BV/TV), bone specific surface (BS/BV), bone surface density and trabecular separation (Tb.Sp). In addition, immunohistochemistry analysis was performed on bone tissue samples for the proteins, Receptor activator of nuclear factor kappa-B (RANK), RANK ligand (RANKL), osteoprotegerin (OPG) and Osteocalcin (OC). Also, the determination of the relative levels of gene expression was performed using Reverse transcription-real-time Polymerase Chain Reaction (RT-PCR). Results: PP and L&Z classification systems revealed a moderate correlation with BV/TV, BS/BV, Tb.Th and Tb.Sp. L&Z's system identified differences among bone types when BV/TV, BS/BV, Tb.Th and Tb.Sp were compared. A weak correlation between PP/L&Z classifications and the expression of bone metabolism regulators (RANK, RANKL, OPG e OC) was found. The analysis of mRNA expression showed no difference between the bone types evaluated. Conclusions: Our results suggest that PP and L&Z subjective bone-type classification systems are related to histomorphometric aspects. These data may contribute to the validation of these classifications. Bone remodelling regulatory molecules do not seem to influence morphological aspects of the jawbone © 2011 John Wiley & Sons A/S.
Resumo:
Objectives: To evaluate the influence on osseointegration of Deproteinized bovine bone mineral (DBBM) particles used to fill defects of at least 1 mm around implants having no primary contact with bone. Material and methods: Premolars and first molars were extracted bilaterally from the mandible of six Labrador dogs. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated, and one recipient site was prepared in the molar region of each hemi-mandible to place implants. These were installed with a deliberate circumferential and periapical space to the bone walls of 1.2 mm. All implants were stabilized with passive fixation plates to maintain the implants in situ and without any contact with the implant bed. The control sites were left to be filled with coagulum, while at the test sites, the residual gap was filled with DBBM. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically. Results: Mineralized bone-to-implant contact was 4.0% and 3.9% for control and test sites, respectively. The width of the residual defects was 0.48 mm and 0.88 mm at the control and test sites, respectively. The percentage of implant surface covered by a layer of dense connective tissue of 0.12 mm of width on average was 84.9% and 88.5% at the control and test sites, respectively. Conclusion: A minor and not predictable degree of contact or distance osteogenesis was obtained on the implant surface when primary contact of the implant surface with the implant bed had deliberately been avoided. DBBM grafting of the artificial gap did not favor osseointegration. Neither did it enhance the ability to bridge the gap with newly formed bone in an artificial defect wider than 1 mm. © 2013 John Wiley & Sons A/S.
Resumo:
Laminin-1 has been reported as one of the factors responsible for the nucleation of calcium phosphates and, in vitro, has been reported to selectively recruit osteoprogenitors. This article focused on its in vivo effects, and evaluated the effect of laminin-1 local application on osseointegration. Polished cylindrical hydroxyapatite implants were coated with laminin-1 (test) and the bone responses in the rabbit tibiae after 2 and 4 weeks were evaluated and compared to the non-coated implants (control). Before the samples were processed for histological sectioning, they were three-dimensionally analysed with micro computed tomography (μCT). Both evaluation methods were analysed with regards to bone area around the implant and bone to implant contact. From the histologic observation, new bone formation around the laminin-1 coated implant at 2 weeks seemed to have increased the amount of supporting bone around the implant, however, at 4 weeks, the two groups presented no notable differences. The two-dimensional and three-dimensional morphometric evaluation revealed that both histologic and three-dimensional analysis showed some tendency in favour of the test group implants, however there was no statistical significance between the test and control group results. © 2012 International Association of Oral and Maxillofacial Surgeons.