252 resultados para Calagem superficial
Resumo:
The evaluation of soil permeability throughout the weathering profile is one of the most important features to be considered in environmental studies. This study, developed from field testing and analysis of data obtained by geostatistical methods, aims at mapping the permeability around the Ribeirão Claro river. The intent is to simulate an accident with toxic liquids where soil permeability is of fundamental importance. Another purpose of the research was to determine the minimum time that, in the event of an accident, a possible contaminant to reach the water table level and be routed to the nearest drain, in this case, the Ribeirao V Claro river constitutes fundamental information. The studied area of approximately 4 km² is located within the UNESP-Rio Claro campus, consisting of colluvial soil from Fm. Rio Claro superimposed on residual soil of Fm. Corumbataí. The method used to determine the permeability is the concentric cylinders performed on a sampling grid with 64 points containing spacing of 5 meters EW and 10 meters NS. In the places of permeability tests were collected samples for laboratory determination of the percentage of fines. From particle size analysis was performed and analysis statistical and geostatistical on this data. The histogram was based on the statistical studies, and the semivariograms were based on geostatistical estimation methods. Based on the comparison between the maps and the data obtained, it was determined that the percentage of fines in colluvial surface soil has little influence on permeability, which the proximity to the Ribeirao Claro river, the eastern portion, a factor that influences the distribution of permeability values
Resumo:
This research presents the result of the engineering geological mapping in a 1:50.000 scale, in Bairro do Peão region, in Piracaia (SP), represented by means of homogeneous units which are susceptible to superficial dynamic processes. To serve as basis for the elaboration of a Chart of Susceptibility to Processes of Superficial Dynamic, a series of physical samples was collected, considering erosive processes and registers of information of usage and soil occupation. The procedure used for elaborating the geotechnical chart is based on Vedovello (2000), which suggests the physiographic compartimentation of the area through photointerpretation and further geotechnical characterization of the selected samples. The geotechnical characterization of the samples was made by identifying the features and properties of the material and forms of the physical environment determining the geotechnical conditions through geological-geotechnical profile descriptions typical of/ peculiar to each unit defined in the area. Thus, for each unit selected, the susceptibility level was established in very high, high, average and low, as well as the prevalent erosive processes.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Química - IQ
Resumo:
The aim of this study was to investigate the enamel wear permanent teeth after plastic stick or low speed rubber cup microabrasion. Ten permanent molars were selected to evaluate enamel wear which were sectioned into mesial and distal halves. Each half of the molars was randomly assigned to one of two experimental groups (n = 10) according to the enamel microabrasion technique: plastic stick (GE) or rubber cup (GT). In both the groups, the enamel was submitted to 10 applications of an abrasive paste comprised of 35% phosphoric acid and pumice powder. The paste was applied for 20 seconds under a pressure of 30 g using the instrument defined for each group (plastic stick or rubber cup). The specimens were evaluated under a stereomicroscope connected to a computer. The enamel wear no was statistically different between GE and GT, which presented a mean wear of 304.74 µm (21.20%) and 338.35 µm (22.75%). In conclusion, superficial enamel wear was seen for both the groups, independent of the technique used for the accomplishment of the microabrasion.
Resumo:
The application of ultrasonic waves during the initial setting of the glass ionomer cements (GIC) has demonstrated increase of the cure speed, reduction of air bubbles and improves in some mechanical properties. The aim of this study was to evaluate the effect of the ultrasound on the microhardness and the superficial roughness in two GICs (FUJI IX GP (GC Corporation) and Ketac Molar EasyMix (3M ESPE)). Forty specimens were confectioned, twenty for evaluation of the superficial roughness and twenty for evaluation of the microhardness. Half of them received for thirty seconds the ultrasonic waves application. The readings of the roughness had been carried before and after the toothbrushing test. The twenty remaining specimens had been polished with abrasive sandpapers of decreasing granulations and submitted to the hardness test. The results, analyzed for the variance analysis (ANOVA) (p<0,05), had demonstrated increase of the hardness for all the groups with the application of ultrasonic waves, being bigger for the Ketac Molar EasyMix. The ultrasound application also caused significant reduction of the superficial roughness for the Ketac Molar EasyMix. After the toothbrushing test, this last property increased for all the materials. It could be concluded that the application of ultrasonic waves was effective in increasing the superficial hardness of the materials and that it improved the roughness of the Ketac Molar EasyMix before the toothbrushing test.
Resumo:
To compare the abrasion wear resistance and superficial roughness of different glass ionomer cements used as restorative materials, focusing on a new nanoparticulate material. Material and Method: Three glass ionomer cements were evaluated: Ketac Molar, Ketac N100 and Vitremer (3M ESPE, St. Paul, MN, USA), as well as the Filtek Z350 (3M ESPE, St. Paul, MN, USA). For each material were fabricated circular specimens (n=12), respecting the handling mode specified by the manufacturer, which were polished with sandpaper disks of decreasing grit. The wear was determined by the amount of mass (M) lost after brushing (10,000 cycles) and the roughness (Ra) using a surface roughness tester. The difference between the Minitial and Mfinal (ΔM) as well as beroughness of aesthetic restorative materials: an in vitro comparison. SADJ. 2001; 56(7): 316-20. 11. Yip HK, Peng D, Smales RJ. Effects of APF gel on the physical structure of compomers and glass ionomer cements. Oper. Dent. 2001; 26(3): 231-8. 12. Ma T, Johnson GH, Gordon GE. Effects of chemical disinfectants on the surface characteristics and color of denture resins. J Prosthet Dent 1997; 77(2): 197-204. 13. International organization for standardization. Technical specification 14569-1. Dental Materials – guidance on testing of wear resistance – PART I: wear by tooth brushing. Switzerland: ISO; 1999. 14. Bollen CML, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater.1997; 13(4): 258-9. 15. Kielbassa AM, Gillmann C, Zantner H, Meyer-Lueckel H, Hellwig E, Schulte-Mönting J. Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Res. 2005; 39(5): 380-6. 16. Tanoue N, Matsumara H, Atsuta M. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthet Dent. 2000; 84(1): 93-7. 17. Heath JR, Wilson HJ. Abrasion of restorative materials by toothpaste. J Oral Rehabil. 1976; 3(2): 121-38. 18. Frazier KB, Rueggeberg FA, Mettenburg DJ. Comparasion of wearresistance of class V restorative materials. J Esthet Dent. 1998; 10(6): 309-14. 19. Momoi Y, Hirosakil K, Kohmol A, McCabe JF. In vitro toothebrushdentifrrice abrasion of resin-modified glass ionomers. Dent Mater. 1997; 13(2): 82-8. 20. Turssi CP, Magalhães CS, Serra MC, Rodrigues Jr.AL. Surface roughness assessment of resin-based materials during brushing preceded by pHcycling simulations. Oper Dent. 2001; 26(6): 576-84. 21. Wang L, Cefaly DF, Dos Santos JL, Dos Santos JR, Lauris JR, Mondelli RF, et al. In vitro interactions between lactic acid solution and art glassionomer cements. J Appl Oral Sci. 2009; 17(4): 274-9. 22. Carvalho FG, Fucio SB, Paula AB, Correr GM, Sinhoreti MA, PuppinRontani RM. Child toothbrush abrasion effect on ionomeric materials. J Dent Child (Chic). 2008; 75(2): 112-6. 23. Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater. 2009; 25(11): 1347-57. tween Rainitial and Rafinal (ΔRa) were also used for statistical analysis (α=0.05). Results: Except for the composite, significant loss of mass was observed for all glass ionomer cements and the ΔM was comparable for all of them. Significant increase in roughness was observed only for Vitremer and Ketac N100. At the end of the brushing cycle, just Vitremer presented surface roughness greater than the composite resin. Conclusion: All glass ionomer cements showed significant weight loss after 10,000 cycles of brushing. However, only Vitremer showed an increase of roughness greater than the Z350 resin, while the nanoparticulate cement Ketac N100 showed a smooth surface comparable to the composite.
Resumo:
To evaluate the surface roughness and Vickers hardness of glass ionomer cements Ketac Molar® and Ketac Molar Easy Mix® (ESPE Dental AG) after brushing. Methods – After roughness and hardness tests of 14 specimens of each material, they were submitted to 30,000 brushing cycles and new analysis of roughness and hardness. Statistical analysis showed that there was no significant difference between the materials in relation to the initial roughness. Results – However, after brushing there was higher surface roughness for Ketac Molar Easy Mix®. For both materials, there was increase of hardness after brushing and the highest values were presented by Ketac Molar Easy Mix®. Conclusion – It can be concluded that, when choosing a glass ionomer cement for restoration it should be preferred to Ketac Molar, because it showed hardness similar to Ketac Molar Easy Mix, but it was less rough.
Resumo:
The aim of this study was to evaluate and compare the roughness and superficial morphology of enamel and a composite restorative resin after different bleaching techniques application. Material and Methods: Bovine incisors were selected and standardized cavities were prepared on the buccal surface, which were restored with composite resin. The teeth were distributed according to the following treatments: G1- bleaching with 10% carbamide peroxide (CP); G2 - bleaching with 38% hydrogen peroxide (HP); and G3 - bleaching with 38% of HP associated to light irradiation. For G1, the bleaching gel was applied for 8 hours daily during 21 days. For G2 and G3, 3 sessions were performed, consisting of 3 applications of 15 minutes each, with 7 days of intervals between the sessions. For G3, the LED (470nm) light was used to activate the bleaching agent for 6 minutes. The surface of enamel and composite resin were evaluated before and after the bleaching procedures using a roughness tester and an atomic force microscope. Results: The results showed significant differences in surface roughness of enamel after bleaching only for G1 (Wilcoxon, p<0.05). For composite resin, neither group showed a statistical difference compared to control (Mann-Whitney, p>0.05). Conclusion: It was concluded that the increase in the roughness of enamel occurred only after bleaching therapy using a gel with 10% of CP. The bleaching procedures evaluated in this investigation did not increase the roughness or cause changes in the superficial morphology of the composite resin.
Resumo:
The increasing importance of aesthetic in the Dentistry for the patients and the consumers brought a constant rise in the number of products and procedures to facilitate the confection of the dental bleaching. Concomitantly, thone was a sudden increase in the number of research and publications, in vitro and in vivo, about its possible adverse reactions. Through literature revision this study aims to verify the possible morphologic alterations of the submitted enamel and dentine with different bleaching agents making critical analysis of the results of the current research with relation to the study of the microhardness and superficial roughness.
Resumo:
The success achieved by the use of composite resins in anterior teeth precipitately leads their use in posterior teeth. However, the indiscriminate application of these materials in cavities with several diverse sizes rapidly pointed out their lack of resistance to oclusal and proximal wear. OBJECTIVE: To evaluate the surface roughness of composite resin in relation to finishing and polishing technique. MATERIAL AND METHODS: Eight experimental groups (n = 15) were divided according to finishing and polishing technique: G1 – Z250TM composite resin without surface finishing and polishing; G2 – Z250TM composite resin plus surface finishing and polishing; G3 – P60TM composite resin without surface finishing and polishing; G4 – P60TM composite resin plus surface finishing and polishing; G5 – Prodigy CondensableTM composite resin without surface finishing and polishing; G6 – Prodigy CondensableTM composite resin plus surface finishing and polishing; G7 – SurefillTM composite resin without surface finishing and polishing; G8 – SurefillTM composite resin plus surface finishing and polishing. Three packable and one microhybrid (control group) composite resin was used. The surface roughness was measured using a profilometer at three points in each sample. The results were evaluated by ANOVA and Tukey test (p < 0.05). RESULTS: Prodigy CondensableTM composite resin showed the lowest surface roughness, while SurefillTM showed the highest surface roughness. Comparing the resins used, only between P60TM and SurefillTM there were no statistically significant differences (p > 0,05). CONCLUSION: Surface roughness was lower in all types of resin composites surfaces in contact with Mylar matrix strip than in areas submitted to finishing and polishing procedure.
Resumo:
This study evaluated the influence of fluoride mouth rinses and repolishing on the superficial morphology and color stability of nanofilled resin. About 150 specimens were prepared and polished using aluminum oxide discs for 15 s with a pressure of 2 kg. The experimental groups were divided according to the immersion medium (artificial saliva, 0.5% sodium fluoride, Fluordent Reach, Oral B, Fluorgard) and repolishing procedure (without and with). The specimens were continuously immersed for 1 week. Thereafter, half of each sample was repolished. A color reading was performed after 24 h of immersion in the artificial saliva baseline, after continuous immersion, and after repolishing. The superficial morphology was examined using scanning electron microscopy (SEM) in a qualitative way. Color change (∆E) data were submitted to a mixed analysis of variance using a Shapiro-Wilk test (p>0.05 for the different immersion media) and Sidak's test (p<0.05 for the differences between groups). In the interaction between the repolishing and the immersion media, Fluorgard showed a statistical difference between the ∆E values with and without repolishing (p<0.0001). On the SEM observations, both Fluordent Reach and Fluorgard caused degradation of the superficial resinous matrix of the composite after continuous immersion. This matrix was removed after repolishing.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG