330 resultados para COATED IMPLANTS
Resumo:
Aim: To evaluate the influence of the presence or absence of adjacent teeth on the level of the mesial and distal alveolar bony crest following healing at sites where implants were installed immediately into extraction sockets. Material and methods: Six Labrador dogs were used. In the right side of the mandible, full-thickness flaps were elevated, and the second, third, and fourth premolars and first molars were extracted. In the left side of the mandible, endodontic treatments of the mesial roots of the third and fourth premolars as well as of the first molars were performed. Full-thickness flaps were elevated, the teeth were hemi-sected, and the distal roots were removed. The second premolars were extracted as well. Subsequently, implants were bilaterally installed with the implant shoulder flush with the buccal bony crest. Implants were placed in the center of the alveoli, but at the fourth premolars, they were placed toward the lingual bony plate of the alveoli. After 3 months of healing, the animals were euthanized and histological sections of the sites prepared. Results: Larger bony crest resorption was observed at the test compared with the control sites, both at the bucco-lingual and mesio-distal aspects. The differences between test and controls for the coronal level of osseointegration were smaller than those for resorption. When data from all mesial and distal sites facing an adjacent tooth were collapsed and compared with those opposing an edentulous zone, lower bony crest resorption and deeper residual marginal defects were found at the sites with neighboring teeth. Conclusion: The extraction of teeth adjacent to a socket into which implants were installed immediately after tooth extraction caused more alveolar bone resorption both for the bucco-lingual and at the mesio-distal aspects compared with sites adjacent to a maintained tooth. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM), in conjunction with a collagen membrane, on bone resorption at implants installed in a lingual position immediately into extraction sockets with horizontal residual buccal defects >2.0 mm. Material & methods: The pulp tissue of the mesial roots of 1M1 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated. The molars were hemi-sectioned and the distal roots removed. Implants were installed in a lingual position and with the shoulder flush with the buccal bony crest. After installation, defects of about 2.5 and 2.7 mm in width resulted at the buccal aspects of the test and control sites, respectively. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. On the control sites, no biomaterials were applied. A non-submerged healing was allowed. Results: After 3 months of healing, one control implant was not integrated and was excluded from the analysis, together with the contralateral test implant. All remaining implants were integrated into mature bone. The buccal alveolar bony crest was resorbed more at the test compared with the control sites, 2.2 ± 0.9 mm and 1.5 ± 1.3 mm, respectively. The vertical resorption of the lingual plate was 1.6 ± 1.5 mm and 1.5 ± 1.1 mm at the test and control sites, respectively. Only small residual DBBM particles were found at the test sites (1.4%). Conclusion: The use of DBBM particles to fill buccal defects of ≥2.5 mm at implants installed immediately into alveolar extraction sockets did not preserve the buccal bony wall. © 2012 John Wiley & Sons A/S.
Resumo:
Rehabilitating atrophic maxilla poses many challenges. Reconstructive techniques that require sinus grafting are viable and acceptable; however, these techniques also are considered to be expensive, invasive, and time-consuming. Tilted implants anchored in distal areas using available bone have been reported as a less invasive and highly predictable treatment option. This article presents a case involving implant anchorage via tilted implants as an alternative technique to bone grafting procedures. Copyright © 2013 by the Academy of General Dentistry.
Resumo:
Purposes: The purposes of this study were to evaluate the influence of chronic stress (CS) on implant osseointegration and also to analyze whether alendronate (ALN) therapy could prevent these eventual stress-negative effects. Materials and Methods: Adult male Holtzmann rats were assigned to one of the four experimental groups: AL (ALN; 1mg/kg/week; n=12), ALS (ALN+CS; 1mg/kg/week; n=12), CTL (sterile physiological saline; n=12), or CTLS (sterile physiological saline+CS; n=12). After 58 days of drug therapy, the ALS and CTLS groups were exposed to CS, and 2 days later all animals underwent tibial implant installation. The animals were euthanized 28 days following the operative surgical procedure. Results: It was observed that the CTLS group presented an impairment of bone metabolism represented by lowest levels of bone-specific alkaline phosphatase and bone area fraction occupancy values. Furthermore, these animals presented a higher proportion of empty osteocytic lacunae. In contrast, the ALN therapy showed increased osseointegration and torque value parameters, regardless of stress exposition. Conclusions: Analysis of the data presented suggests that CS partially impairs the osseointegration of tibial implants and that ALN therapy is able to prevent these negative effects. © 2013 Wiley Periodicals, Inc.
Resumo:
The aim of the study was to evaluate mechanical behavior of implants inserted in three substrates, by measuring the pullout strength and the relative stiffness. 32 implants (Master Porous-Conexao, cylindrical, external hexagon, and surface treatment) were divided into 4 groups (n = 8): pig rib bone, polyurethane Synbone, polyurethane Nacional 40 PCF, and pinus wood. Implants were installed with the exact distance of 5 mm of another implant. The insertion torque (N·cm) was quantified using the digital Kratos torque meter and the pullout test (N) was performed by an axial traction force toward the long axis of the implant (2 min/mm) through mount implant devices attached to a piece adapted to a load cell of 200 Kg of a universal testing machine (Emic DL10000). Data of insertion torque and maximum pullout force were submitted to one-way ANOVA and Bonferroni tests (α = 0.05). Polyurethane Nacional 40 PCF and pinus wood showed the highest values of insertion torque and pullout force, with significant statistical difference (P < 0.05) with other groups. The analysis showed stiffness materials with the highest values for primary stability. © 2013 Nathalia Ferraz Oliscovicz et al.
Resumo:
Objective: To evaluate the correlations between clinical-radiographical aspects and histomorphometric-molecular parameters of endosseous dental implant sites in humans. Material and methods: The study sample consisted of bone implant sites from the jawbones of 32 volunteers, which were classified according to two different systems: (1) based only on periapical and panoramic images (PP); (2) as proposed by Lekholm & Zarb (L&Z). Bone biopsies were removed using trephine during the first drilling for implant placement. Samples were stained with haematoxylin-eosin (HE), and histomorphometric analysis was performed to obtain the following parameters: trabecular thickness (Tb.Th), trabecular number, bone volume density (BV/TV), bone specific surface (BS/BV), bone surface density and trabecular separation (Tb.Sp). In addition, immunohistochemistry analysis was performed on bone tissue samples for the proteins, Receptor activator of nuclear factor kappa-B (RANK), RANK ligand (RANKL), osteoprotegerin (OPG) and Osteocalcin (OC). Also, the determination of the relative levels of gene expression was performed using Reverse transcription-real-time Polymerase Chain Reaction (RT-PCR). Results: PP and L&Z classification systems revealed a moderate correlation with BV/TV, BS/BV, Tb.Th and Tb.Sp. L&Z's system identified differences among bone types when BV/TV, BS/BV, Tb.Th and Tb.Sp were compared. A weak correlation between PP/L&Z classifications and the expression of bone metabolism regulators (RANK, RANKL, OPG e OC) was found. The analysis of mRNA expression showed no difference between the bone types evaluated. Conclusions: Our results suggest that PP and L&Z subjective bone-type classification systems are related to histomorphometric aspects. These data may contribute to the validation of these classifications. Bone remodelling regulatory molecules do not seem to influence morphological aspects of the jawbone © 2011 John Wiley & Sons A/S.
Resumo:
Aim: Clinical data are scarce on flapless-guided surgery in the mandible using the all-on-four concept. In addition, limited documentation exists on the latter under immediate loading conditions with a pre-fabricated implant bridge. The aim was to provide detailed documentation focusing on clinical and radiographic outcome and complications. Material and methods: Sixteen systemically healthy non-smoking patients (10 women, 6 men, average age 59 years) with sufficient bone volume in the mandible were operated via flapless-guided surgery using the all-on-four concept. Clinical and radiographic data and complications were registered at 3, 6 and 12 months. Results: The overall implant survival rate was 90% with a trend for higher failure of short implants (P = 0.098). The mean bone level after 12 months of function was 0.83 mm with a maximum of 1.07 mm. Technical complications were common (15/16 patients). These mainly related to a misfit between the pre-fabricated prosthesis and abutment(s) (13/16 patients). Conclusion: If immediate loading of implants is pursued fabrication of the implant bridge should be based on actual impression of the implants at the time of surgery and not on their virtual position. © 2011 John Wiley & Sons A/S.
Resumo:
In this work, we report on the evaluation of a superconducting fault current limiter (SFCL). It is consisted of a modular superconducting device combined with a short-circuited transformer with a primary copper winding connected in series to the power line and the secondary side short-circuited by the superconducting device. The basic idea is adding a magnetic component to contribute to the current limitation by the impedance reflected to the line after transition of the superconducting device. The evaluation tests were performed with a prospective current up to 2 kA, with the short-circuited transformer of 2.5 kVA, 220 V/660 V connected to a test facility of 100 kVA power capacity. The resistive SFCL using a modular superconducting device was tested without degradation for a prospective fault current of 1.8 kA, achieving the limiting factor 2.78; the voltage achieved 282 V corresponding to an electric field of 11 V/m. The test performed with the combined SFCL (xsuperconducting device + transformer) using series and toroidal transformers showed current limiting factor of 3.1 and 2 times, respectively. The test results of the combined SFCL with short-circuited transformer showed undesirable influence of the transformer impedance, resulting in reduction of the fault current level. © 2002-2011 IEEE.
Resumo:
Objectives: To evaluate the influence on osseointegration of Deproteinized bovine bone mineral (DBBM) particles used to fill defects of at least 1 mm around implants having no primary contact with bone. Material and methods: Premolars and first molars were extracted bilaterally from the mandible of six Labrador dogs. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated, and one recipient site was prepared in the molar region of each hemi-mandible to place implants. These were installed with a deliberate circumferential and periapical space to the bone walls of 1.2 mm. All implants were stabilized with passive fixation plates to maintain the implants in situ and without any contact with the implant bed. The control sites were left to be filled with coagulum, while at the test sites, the residual gap was filled with DBBM. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically. Results: Mineralized bone-to-implant contact was 4.0% and 3.9% for control and test sites, respectively. The width of the residual defects was 0.48 mm and 0.88 mm at the control and test sites, respectively. The percentage of implant surface covered by a layer of dense connective tissue of 0.12 mm of width on average was 84.9% and 88.5% at the control and test sites, respectively. Conclusion: A minor and not predictable degree of contact or distance osteogenesis was obtained on the implant surface when primary contact of the implant surface with the implant bed had deliberately been avoided. DBBM grafting of the artificial gap did not favor osseointegration. Neither did it enhance the ability to bridge the gap with newly formed bone in an artificial defect wider than 1 mm. © 2013 John Wiley & Sons A/S.
Resumo:
A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.
Resumo:
This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
Resumo:
Breast implants are medical devices that are used to augment breast size or to reconstruct the breast following mastectomy or to correct a congenital abnormality. Breast implants consist of a silicone outer shell and a filler (most commonly silicone gel or saline). Approximately 5 to 10 million women worldwide have breast implants. Histomorphometric study to evaluate the biological tissue compatibility of silicone implants suitable for plastic surgery and the adverse effects and risks of this material. Thirty Wistar white rats received subcutaneous implants and the revestiment of silicone gel Silimed ®®, and randomized into six groups of five animals each, according to the type of implanted material and the time of sacrifice. Eight areas of 60.11mm2 corresponding to the obtained surgical pieces were analyzed, counting mesenchymal cells, eosinophils, and foreign body giant cells, observing an acceptable biocompatibility in all implants, for subsequent statistical analysis by Tukey test. Silicone gel showed inflammation slightly greater than for other groups, with tissue reactions varying from light to moderate, whose result was the formation of a fibrous capsule around the material, recognized by the organism as a foreign body. Despite frequent local complications and adverse outcomes, this research showed that the silicone and top layer presented an acceptable chronic inflammatory reaction, which did not significantly differ from the control group. In general, it is possible to affirm that silicone gel had acceptable levels of biocompatibility, confirmed the rare presence of foreign body giant cells, and when of the rupture, formed a fibrous capsule around the material, separating the material of the organism. © AVICENA 2013.
Resumo:
Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.
Resumo:
Metallic nanoparticles (NPs) have been used to improve the sensibility of biosensors and bioassays either by enhancing radiative emission or inducing quenching process on fluorescent probes. The aim of this research was to study the interaction of silver and silver-pectin NPs with water-dispersed carboxyl-coated cadmium telluride (CdTe) quantum dots (QDs). Metallic NPs were observed to change the emission of these fluorophores through local field effects. In a solution-base platform, an increase of 82 % was observed for the CdTe emission due to the interaction of QDs and silver-pectin NPs. QDs interaction with silver NPs without pectin was also investigated and a smaller emission enhancement of 20 % was detected. We observed that the NPs' nature and QDs' surface charge and concentration are important parameters for NPs-QDs interaction. Moreover, the presence of the pectin polymer shows to be a key component to the observed fluorescence enhancement. © 2013 Springer Science+Business Media New York.