313 resultados para Aplicações
Resumo:
A Ilustração Científica é um trabalho que consiste na representação fiel de um material biológico determinado, respeitando-se todas as medidas, proporções e contraste de cores, mesmo que em preto e branco. Por isso, a capacidade de observação é uma qualidade indispensável para que se tenha um bom resultado. Podem ser desenhos de materiais vivos, extintos, arqueológicos e até processos cirúrgicos e devem ser claro em significado, não poluído e que não provoque nenhum tipo de incompreensão ou dúvidas. Ela é altamente utilizada no meio acadêmico tendo um vasto campo de aplicação, variando desde trabalhos mais simples e esquemáticos aos mais complexos com alto nível de acabamento e detalhamento. Independentemente à técnica, as ilustrações científicas ainda são uma ferramenta de extrema importância e de grande utilização, sendo muito solicitadas por pesquisadores, que desejam enriquecer seus trabalhos, torná-los mais explicativos, mais claros, e mais didáticos. Por mais que se tenha a possibilidade das fotografias modernas, um desenho empregando técnicas tradicionais como acabamento é totalmente indispensável, já que a foto, por mais sofisticada e cheia de recursos que possua a máquina, não consegue transmitir todos os detalhes e estruturas que se deseja em uma mesma fotografia. O artista tem a liberdade de montar uma prancha com aquilo que o pesquisador precisa, usando sua percepção visual e destreza para reproduzir com exatidão o material em questão. Recursos digitais, ao contrário do que muitos acreditam, não tiraram o espaço das técnicas tradicionais, mas veio como mais uma opção de ferramenta de trabalho que, aliás, para usá-la é necessário saber desenhar igualmente àquele que não se utiliza desse recurso. O tempo passou, as sociedades mudaram e as representações...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
This paper presents the development of a Web application called CityFreedom based on 3D modeling. The developed system demonstrates the use of most revolutionary and innovative techniques to create Web portals with the integrated 3D navigation scenarios to their own pages, without requiring any kind of plug-ins or external software. Everything works on the basis of compatible browsers. The CtyFreedom aims to give the user the feeling of immersion in virtual reality so get to interact with a three-dimensional city in order to see new places, traveling in an area of town that has always thought of knowing or even analyze establishments long before attend-them. It's the freedom to know and traveling around the city in a simple and trivial way. It is a new trend, the future of Web systems development
Resumo:
The use of stable isotopes in Brazil is being improved, mainly through research conducted at main universities in the country. Some applications in health allow to studying, for example, processes involving synthesis and protein degradation, energy expenditure, body composition, kinetics of vitamins, mineral absorption and diagnose diseases related to Helicobacter pylori. The big motivation is to encourage the growth of investments in health in the few centers that have mass spectrometers in Brazil, as the technique is harmless to humans, in other words, no has problems to use it like when you use radioactive isotopes
Resumo:
In materials science, the search for technological improvements have become one of the main subject of study of researchers. This is especially true in the case of materials with reduced sizes, in the nanometer scale. Important phenomena to be studied in these cases are the desorption and adsorption on two-dimensional materials, such as graphene. These phenomena are of great importance in the study of interactions between organic films, synthesis or catalysis of reactions on surfaces and even in the creation of nanoscale devices [1, 2, 3, 4]. Between the most important topics related to these phenomena are the storage of gases in low-dimensional systems and the study of nanostructured fuel cells or batteries. In this context we used two different parametrizations for the reactive force field ReaxFF to study the potential barriers and reaction barriers of our system. First we made a study about the Reaction Barriers and Energy Barriers for bonds between graphene and the following atoms: sulfur, fluorine, hydrogen, nitrogen and oxygen. It is important to have this information in order to make it possible to understand how these atoms react with the graphene sheet. Subsequently, we calculate reaction barriers for mixed structures where fluorine is a fixed element bonded to graphene and other element is simultaneously bonded to graphene. This other element (N, O, H or S) is varied in its possible relative positions (ortho, meta and para in relation to fluorine in either: the same side and in the opposite side of the graphene membrane)
Resumo:
This project brings the development of an Android application which will allow users to access 3D models on web. The application developed allows Android devices to access web pages which have code that should use OPENGL to renderize. To demonstrate this functionality, an example web application was build, using technologies such as X3DOM and HTML5, which uses WebGL to get renderized. This web application gives to the user an environment of a virtual city, where he could surf by and interact with the objects. The Android application brings this immersion to the mobile world, also. The access and storage of data was developed a Webserver, which bring to the web application a simple API to give access to the database
Resumo:
In recent years the aeronautic industries has increased investment in areas of technological research aiming at materials that offer better performance, safety, weight reduction and fuel consumption. For this reason the most studied materials are polymeric materials, due to their higher mechanical strength and higher stiffness. This work evaluated characteristics of two composite laminates produced from the same process, but they differed only in regions where the resin was injected and the vacuum position. The composite laminates were SC-79 resin reinforced with glass fiber fabric (plain weave) processed via VARTM. For this reason the material was subjected to mechanical tests such as: tensile, and fatigue following standards ASTM D 3039 and ASTM D 3479, respectively. The latter was observed the S-N curve. It was performed the ultrassonic C-scan analysis to check impregnation of the fiber. Considering that the process was the same for the two laminates, with small variations in the injection and in vacum ports, it was expected to find similar characteristics
Resumo:
The small angle X-ray scattering (SAXS) technique has been used with very much versatility and success in the structural characterization of nanostructured materials. The present work deals with a study of the principles of the SAXS technique and of some classical models employed in the structural characterization of nanostructured materials. Particularly, the study of the models and of the associated methodologies is applied to a set of samples of silica gels, of varied typical structures, prepared in the Laboratório de Novos Materiais of the Departamento de Física of the IGCE. The work discusses in an introductory chapter the principles of the SAXS technique and the foundation of classical models often used in the structural characterization of materials. The classical models and the associated methodologies were applied to a variety of silica gel structures. The studies include: i) the scattering from a system of particles - Guinier's law; ii) the asymptotic scattering from a two-phase system - Porod's law; iii) systematic deviation from Porod's law - Surface Fractal; iv) heterogeneities in solids with random size distribution - DAB Model; and v) the scattering from mass fractal structures. The analyses were carried out from experimental SAXS data obtained in several opportunities at the Laboratório Nacional de Luz Síncrotron (LNLS)
Resumo:
A discussion concerning marine eutrophication, possible generated from an imbalance of fish population is presented. Simulations through a code in FORCE 2.0 considering a predator-prey model have been made and the numerical results for a three different fish species were plot in ORIGIN code. The populations considered in this study were: Sardines being prey and both mackerel and tuna being the sardine’s predators. Some hipotheses concerning to the marine eutrophication have being made according to the stages of the dynamics of the system. For situations were the prey’s populationis very low, the quality of the water experiences a strong depreciation leading to a possible eutrophication of the water.
Resumo:
Wireless communications is a feature that has become indispensable for many people in the whole world. Through this feature, communication process can become much more efficient, allowing people to access information much more quickly wherever they are. The constant evolution of communication technologies allows the development of new unthinkable applications and services. This new range of possibilities brings greater mobility and efficiency for final users and also helps service providers and carriers to improve the quality of services offered by them. This study presents the principles of wireless communication and the Wi-Fi technology as well as its most modern applications, covering from the basics of computer networks to the procedures of planning a wireless network, concepts of radio frequency, antennas, patterns, regulatory agencies, network equipment, protocols and network monitoring
Resumo:
Titanium and its alloys have been used for biomedical applications due their excellent properties such as high corrosion resistance, biocompatibility and mechanical properites. In this study, microstructural and mechanical properties of Ti-30Ta alloy was evaluated during its processing. Ti-30Ta alloy ingots were produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Its melting was realized in arc melting furnace in an argon atmosphere. After homogenizing at 1200ºC, ingots were cold worked by swaging. Samples with 13 mm in diameter were obtained. They were forging at the reduction ratios of 15%. After deformation, microstructure was evaluated by optical microscopy in each condition. Also, Vickers microhardness of samples was measured and phase constitution was evaluated using XRD analysis
Resumo:
Infrared spectroscopy (IR spectroscopy) explores the infrared region of the electromagnetic spectrum. Like any other spectroscopic technique, it can be used to identify a compound or the composition of investigate a sample. Spectroscopy (IR) is a very important technique in qualitative chemical analysis, widely used in the chemistry of natural products, organic synthesis and transformations. In this work we study of the theoretical foundations of infrared spectroscopy, the different vibration modes, experimental techniques, and the identification and characterization of solids. Were studied as applications: their use in thermograph and remote sensing satellites
Resumo:
The constant search for improvements and the survival of organizations makes the strategic guidelines are deployed and executed at the operational levels. This work is the approach to critical analysis of the equipment of a chemical industry through a case study based on the classification of each equipment manufactures through qualitative and quantitative analysis on the pillars of maintenance costs, loss of production, MTBF, contribution margin, Health Safety and Environment (SHE). From this study and future data collection, along with the flow diagram show the main equipment that should be special attention. To this can be prepared an action plan with deadlines and responsible. With the results one can measure the maintenance costs, loss of production and technical availability of the plant, with future gains
Resumo:
The ozone therapy is the therapeutic administration of ozone, which can be: subcutaneous (SC), intramuscular (IM) Intradiscal; intracavitary (pleural and peritoneal spaces); intravaginal, intrauretral, in the bladder; ozonated autohemotherapy. This therapy is being increasingly studied in order to help in some treatments and is being proven to be very effective in most cases, especially in acting on disinfection and healing of extensive wounds. There are over 6000 articles on the medical use of ozone in the literature, but the concentration used varies with each author. Most diseases have a positive response because ozone increases tissue oxygenation and metabolism. Discovered in Germany in the nineteenth century, ozone therapy still needs further study to clarify its mode of action and demonstrate its benefits. The objective of this review is to discuss some of the studies in the literature and try to clarify the main directions and forms of action of ozone therapy in medicine, showing the possibilities of getting good results including in veterinary medicine
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware
Resumo:
O emprego significativo de polímeros na sociedade moderna causou um grande desenvolvimento tecnológico em torno de sua produção a partir do petróleo. Contudo a limitação crescente de disponibilidade e as altas sucessivas do preço do petróleo têm estimulado, cada vez mais, novas pesquisas no desenvolvimento de biopolímeros provenientes de recursos renováveis. O biopolímero dextrana tem origem da conversão do substrato promovida pela enzima dextranasacarase que é secretada por micro-organismos principalmente pertencentes à família Lactobacillaceae. O objetivo desta pesquisa tem por meio do levantamento bibliográfico reunir conteúdos relacionados ao biopolímero dextrana, a enzima dextranasacarase, os micro-organismos produtores e suas aplicações industriais. Devido a algumas características da dextrana (Hidrofobicidade, estabilidade, pureza e habilidade de formar soluções claras e estáveis, entre outras), a mesma apresenta um grande leque de aplicações na indústria farmacêutica, alimentícia, petroquímica e química. As pesquisas que vinculam a dextrana às aplicações industriais estão em plena expansão e sabendo que a produção de dextrana é proveniente de recursos naturais renováveis e de origem microbiana, o momento atual é favorável para um aumento de sua produção, causando a valorização deste biopolímero no mercado nacional e internacional