221 resultados para vaporization heat
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to estimate milk production and food consumption during the occurrence of heat waves in the Triangulo Mineiro and Alto Paranaiba, MG by means of bioclimatic zoning based on the Temperature and Humidity Index (THI). Therefore a history of heat wave occurrence between the years 2000-2010 was compiled. The decline in milk production (DMP) and reduced food consumption (RFC) were simulated in cities where periods of heat waves were identified. Frutal and Ituiutaba had the highest rate of heat wave occurrence per year. The DMP and RFC showed bioclimatic differences between the cities of Uberaba, Ituiutaba and Frutal. The cities with the best bioclimatic conditions were Sacramento and Patrocinio, as they presented a THI classified outside of the emergency range, with a night THI of below 76 and without heat waves. Therefore, the occurrence of heat waves can impair food intake and decrease milk production, thereby most effectively demonstrating the effects of thermal stress on dairy cows in the Triangulo Mineiro and Alto Paranaiba, MG region.
Resumo:
Peruvian carrot and cassava starches were isolated, adjusted to 30 and 35% moisture, and heatedat 90°C for 8 h. Structural and physicochemical characteristics of the treated starches wereevaluated and compared. High performance anion exchange chromatography with pulsedamperometric detector (HPAEC-PAD), gel permeation chromatography (GPC), and amylosecontent, revealed that the HMT did not change the chemical structures of the starches. A largeagglomeration of granules was observed from SEM, particularly in the Peruvian carrot starch.Crystalline patterns in Peruvian carrot and cassava starches changed from B to C and CAto A,respectively. Relative crystallinity decreased from 30 to 25% in Peruvian Carrot starch, andincreased from 35 to 37% in cassava starch adjusted to 30% moisture. SF and peak viscositydecreased, breakdown was almost completely eliminated (particularly in the Peruvian carrotstarch), and final viscosity increased. WAI and WSI increased as moisture levels of bothstarches increased. Gelatinization temperatures increased and enthalpy decreased. Degrees ofgelatinization increased as the moisture level increased, reaching 33 and 72% in the cassavaand Peruvian carrot starches, respectively. HMT strengthened the intra- and intermolecularinteractions of starches and increased their stability during heating and shearing, but also causeda partial gelatinization in the starches, particularly in Peruvian carrot starch.
Resumo:
Low crystalline PZT powder samples were successfully synthesized using polymeric precursor method and slow decomposition steps. The polymeric resin precursor was thermal treated in a muffle type oven varying the temperature from 250 °C to 700 °C and the time from 3 to 24 hours in order to investigate the order/disorder mechanism toward the amorphous powders. Powder samples with low crystalline phases were obtained at lower temperatures and long time of thermal treatment, demonstrating a kinetic dependence for organic removal and a thermodynamic barrier for crystallization processes. Through XRD and FTIR spectroscopy characterizations the long time thermal treated samples showed to be composed of the solid solution of metal oxides in absent of organic matter, originating broad XRD peaks profiles and no carbonaceous bands in FTIR spectra. A Photoluminescence characterization showed that the peak emission is higher for disordered and homogeneous phases, which only can be reached through the long time of thermal treatment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.
Resumo:
This work examined the histological effects, on the rat palatal mucosa, of a denture base acrylic resin, submitted or not to a post-polymerization heat-treatment. Methods: Fifteen adult female Wistar rats, with sixty days old, weighting 150 g – 250 g were divided in G1: animals being maintained under the same conditions as the experimental groups following described, but without the use acrylic palatal plates (control group); G2: use of heat-polymerized acrylic resin palatal plates made of Lucitone 550; G3: use of palatal plates identical to G2, but subjected to a post-polymerization treatment in a water bath at 55°C for 60 min. The plates covered all the palate and were fixed in the molar region with light-cured resin, thus being kept there for 14 days. After the sacrifice, the palate was removed, fixed in formaldehyde 10% and decalcified with EDTA. Sections were stained using haematoxylin and eosin. Images in duplicate were made from the central region of the cuts, to measure the thickness (μm) of the keratin layers (TKC), epithelium total (TET) and connective tissue (TCC). Statistical analyses were carried out by one-way ANOVA and Tukey post-tests (α=0.05). Results: According to the results there was significant difference in the thickness of keratin between G2 and G3, with G1 having the intermediate value and similar to the other groups. There was a significant difference in the connective tissue with G3
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Automotive heat shields are usually composed of two metal sheets enclosing an insulating material with a paper-like texture that contains refractory ceramic particles. This article discusses the results achieved by recycling the scrap automotive insulation that is discarded in landfills, using the same concept as paper recycling. For comparison with the original product, tests of thickness, bulk density, weight loss on ignition, tensile strength, compressibility, and recovery were performed on recycled materials produced in a so-called "manual" process (involving little automation and performed in adapted facilities) without pressing, and pressed once, twice, and four times. Materials recycled in a so-called "industrial" process (in a paper recycling plant) without pressing, and pressed once were also tested. The recycled materials can be considered approved with respect to the main requirement, thermal insulation, since they dissipated the under-hood temperature by more than 300 A degrees C (like the original product). Like the heat insulation tests, the thermogravimetric analysis suggested that the recycled materials showed higher stability than the original product. Thermogravimetric, microscopy, and energy dispersive spectroscopy analyses indicated that the structural and compositional characteristics of the original product were preserved after recycling.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch.