246 resultados para ristorazioneprenotazionebookingweb app
Resumo:
This paper by R. E. Catai, E. C. Bianchi, P. R de Águia and M. C. Alves reports on the results of an analysis made of roundness errors, residual stresses, and SEM micrographs of VC131 steel. The analysis involved workpieces ground with two types of cutting fluid: synthetic cutting fluid and emulsive oil. In this study, the cutting parameters were kept constant while the type of cutting fluid was varied. The amount of cutting fluid injected in the process was also varied, aiming to identify the ideal amount required to obtain good results without causing structural damage to the workpiece. The SEM analyses of roundness errors and residual stresses revealed that, of the two cutting fluids, emulsive oil provided better tensions due to its greater lubricating power.
Resumo:
This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.
Resumo:
Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.
Resumo:
The lymphoma is the main hematopoietic tumor in dogs and it is characterized by the proliferation of cells from lymphoid tissue, histiocytes and its precursors. Animals with lymphoma often show changes in biochemical and hematological parameters such as non-regenerative normochromic normocytic anemia, hemolytic anemia, hypocalcaemia and monoclonal gammopathy. The development of tumor can cause alterations in serum concentrations of acute phase proteins (APPs), consequent of hepatocytes stimulus by cytokines of inflammatory action. This study aimed to quantify and qualify APPs in dogs with lymphoma, at diagnosis time and during the time of chemotherapy sessions. After syneresis, centrifugation and fractioning the serum samples of 10 healthy and 10 dogs with lymphomas, the proteins fractions were separated by polyacrilamide gel electrophoresis (SDS-PAGE) and its concentrations were determined by computer densitometry. Between 18 and 30 proteins were separated by eletrophoresis, with molecular weights ranging from 18 to 245 kDa (kilodaltons). The alpha-1-glicoprotein acid (AGP) and transferrin serum concentration showed significantly higher in dogs with lymphoma, when compared with healthy dogs at diagnosis. The alpha-1-antitripsin (AAT) serum concentrations showed significantly higher in healthy dogs, when compared with dogs with lymphoma at diagnosis. The dogs with lymphoma the albumin did not appear as negative APP. On the other hand, transferrin appeared as positive AAP at diagnosis time and during the chemotherapy sessions. Healthy dogs had AAT serum concentrations significantly higher when compared to dogs with lymphoma at diagnosis. So, in this trial, it is suggested that this protein has been shown as a negative APP in the dogs with lymphoma. These dogs presented significantly higher AGP serum concentrations, in relation to healthy dogs at diagnosis, evidencing this protein APP positive behavior in neoplasm.
Resumo:
The cost of maintenance makes up a large part of total energy costs in ruminants. Metabolizable energy (ME) requirement for maintenance (MEm) is the daily ME intake that exactly balances heat energy (HE). The net energy requirement for maintenance (NEm) is estimated subtracting MEm from the HE produced by the processing of the diet. Men cannot be directly measured experimentally and is estimated by measuring basal metabolism in fasted animals or by regression measuring the recovered energy in fed animals. MEm and NEm usually, but not always, are expressed in terms of BW0.75. However, this scaling factor is substantially empirical and its exponent is often inadequate, especially for growing animals. MEm estimated by different feeding systems (AFRC, CNCPS, CSIRO, INRA, NRC) were compared by using dairy cattle data. The comparison showed that these systems differ in the approaches used to estimate MEm and for its quantification. The CSIRO system estimated the highest MEm, mostly because it includes a correction factor to increase ME as the feeding level increases. Relative to CSIRO estimates, those of NRC, INRA, CNCPS, and AFRC were on average 0.92, 0.86, 0.84, and 0.78, respectively. MEm is affected by the previous nutritional history of the animals. This phenomenon is best predicted by dynamic models, of which several have been published in the last decades. They are based either on energy flows or on nutrient flows. Some of the different approaches used were described and discussed.
Resumo:
The poly(furfuryl alcohol) is highly indicated to obtain advanced carbonaceous materials due mainly to its good carbon yield (around 50%) and a controllable cure reaction. In the processing of some carbonaceous materials, such as monolithic vitreous carbon, it is necessary to make sure that the material has the smallest porosity to be used in nobler applications such as heart valves and aerospace integrated systems. In this manuscript, a design of experiments was used to study the influence of viscosity, pH, and moisture in the porosity of the cured material. This study shows that the moisture exerts a significant influence on the porosity and the trend of the results lead to conclude that lower viscosity and moisture, and the use of non-neutralized poly(furfuryl alcohol) resins lead to obtain materials with better quality. © 2012 Wiley Periodicals, Inc.
Resumo:
Plasma treatments were applied on the surface of postconsumer polyethylene terephthalate (PET) bottles to increase their wettability and hasten the subsequent hydrolysis process. Sixty-four treatments were tested by varying plasma composition (oxygen and air), power (25-130 W), pressure (50-200 mTorr), and time (1 and 5 min). The best treatment was the one applied in air plasma at 130 W and 50 mTorr for 5 min, as it provided the lowest contact angle, 9.4°. Samples of PET before and after the optimized plasma condition were subjected to hydrolysis at 205°C. Although the treatment changed only a thin surface layer, its influence was evident up to relatively high conversion rates, as the treated samples presented more than 40% higher conversion rates than the untreated ones after 2 h of reaction. Infrared spectroscopy showed that the terephthalic acid obtained from 99% of depolymerization was similar to the commercial product used in PET synthesis. © 2012 Wiley Periodicals, Inc.
Resumo:
In a letter to Nature (February, 2011), Xunlai Yuan and collaborators recorded carbon compression fossils from black shales of the Lantian Formation (Ediacaran), southern Anhui Province, South China. The new fossils, described under five morphological types (Types A to E), exhibit degrees of morphological differentiation suggesting that they were multicellular eukaryotes. Some of the Lantian macrofossils were interpreted as algae, but others are of unknown affinities. For reasons noted in this discussion, Type A fossils attracted our particular attention, and we suggest an alternative interpretation of their affinities. According to our view, some of them (at least those with three faces and no globose holdfast at their base) may represent conulariid cnidarians or close medusozoan relatives. The undistorted organism probably was a three-sided cone in life. We believe that our suggested alternative interpretations of the anatomy and affinities of the fossils in question can be useful in guiding future research on the oldest currently known fossil assemblage of multicellular organisms. Copyright © 2012.
Resumo:
The aim of this study was to investigate the acute phase response (APR) in 15 horses by quantifying physiological venous blood variables and serum acute phase proteins (APP) at 5 minutes and 6 and 12 hours after a training match of high-goal polo. The horses were divided into three experimental groups based on their team positions, including defense (n = 6), midfield (n = 5), and attack (n = 4). Serum proteinograms were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Data were evaluated using analysis of variance for repeated measures. The match represented a high-intensity stimulus for all positions. Defenders appeared to use the anaerobic pathway more than the other positions, as shown by their lower pH and greater lactatemia. Alterations in muscle membrane permeability were observed in all horses, as seen by the increase in serum creatine kinase activity without a correlation with APR. Significant elevations in total serum protein, albumin, ceruloplasmin, haptoglobin, alpha-1 antitrypsin, and 23-kDa protein were seen only during the course of the physical exertion of the match, although there were no differences in these values among positions of the team. After 6 hours of the match, the concentration of transferrin declined, whereas that of alpha-1 acid glycoprotein remained unaltered at all assessed times. These results demonstrated that the defenders required the most use of the anaerobic pathway during the match, and that equestrian polo exercise triggers an acute phase response of relatively short duration; this APR is characterized as noninflammatory, as APR appears to be a physiological alteration related to the stress inherent in physical exercise. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)