492 resultados para candida krusei
Resumo:
Objective: This study investigated the susceptibility of 198 clinical isolates of Candida species against caspofungin, amphotericin B, itraconazole, and fluconazole. Study Design: Suspensions of the microorganisms were spread on Roswell Park Memorial Institute (RPMI) agar plates. Etest strips were placed on the plates, and the minimal inhibitory concentration (MIC) was read after incubation (48 h at 37°C). Data were analyzed by a factorial analysis of variance and a 2 × 2 post hoc test (α = .05). Results: C glabrata showed the highest MIC values (P < .001) against caspofungin, itraconazole, and fluconazole. For amphotericin B, the MIC values of C tropicalis and C glabrata (P = .0521) were higher than those of C albicans (P < .001). Itraconazole was the least effective antifungal; 93.3% of the C glabrata isolates, 3.3% of the C albicans, and 1.3% of the C tropicalis were resistant. All microorganisms were susceptible to caspofungin and amphotericin B. Conclusions: Caspofungin and amphotericin B should be recommended as an effective alternative for the management of oral Candida infections when treatment with topical or other systemic drugs has definitely failed. © 2013 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the photodynamic inactivation (PDI) mediated by Photodithazine® (PDZ) against 15 clinical isolates of Candida albicans, Candida glabrata and Candida tropicalis. Each isolate, in planktonic and biofilm form, was exposed to PDI by assessing a range of PDZ concentrations and light emitting diode fluences. Cell survival of the planktonic suspensions was determined by colony forming units (CFU ml-1). The antifungal effects of PDI against biofilms were evaluated by CFU ml-1 and metabolic assay. Data were analyzed by non-parametric tests (α = 0.05). Regardless of the species, PDI promoted a significant viability reduction of planktonic yeasts. The highest reduction in cell viability of the biofilms was equivalent to 0.9 log10 (CFU ml-1) for C. albicans, while 1.4 and 1.5 log10 reductions were obtained for C. tropicalis and C. glabrata, respectively. PDI reduced the metabolic activity of biofilms by 62.1, 76.0, and 76.9% for C. albicans, C. tropicalis, and C. glabrata, respectively. PDZ-mediated PDI promoted significant reduction in the viability of Candida isolates. © 2013 Taylor & Francis.
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC