244 resultados para aquafarming effluents
Resumo:
The volume of liquid effluent generated in cattle slaughterhouses is quite high and cannot be released untreated in water bodies due to its high pollution load of predominantly organic origin. To minimize the environmental impacts of its industrial wastewater and meet the local environmental legislation, abattoirs shall make the treatment of these effluents. The present work aims to develop the study of a reactor by sequential batch pilot scale, in order to optimize their performance in treating wastewater from a cattle slaughterhouse. The treatment system used was developed and installed in the Laboratory of Wastewater Treatment, in Faculty of Science and Technology UNESP, Presidente Prudente campus. The procedure used followed the operation of sequential batch reactors, in which all processes and treatment operations occurring sequentially in a single unit, by establishing specific operating cycles, which comprise the following separated phases: aerobic reaction, anoxic reaction, sedimentation and emptying. Aiming to improve the quality of treatment was planned the addition of coagulant Poly Aluminum Chloride (PAC) in the reactor, by determining their optimal dosage by Jar-test trials. Were prepared four steps with specific operating cycles: step one or acclimatization (10 hour of aeration, one hour and 30 minutes of sedimentation and 30 minutes for exchanging the effluent); step 2 (6 hours of aeration or aerobic phase, 4 hours and 45 minutes of stirring or anoxic phase and 1 hour and 15 minutes for sedimentation and exchange effluent); step 3 (2 hours and 30 minutes of aeration, 8 hours and 15 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange) and step 4 (2 hours of aeration, 8 hours and 45 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange)... (Complete abstract click electronic access below)
Resumo:
Aquatic ecosystems are suffering many impacts caused by human activities resulting from the activities occurring around them. With technological progress observed in recent years, this environment has received large amounts of chemicals from industries, agriculture and urban area that affect the aquatic biota. Among these sources of contamination, the oil industry has contributed to the pollution of aquatic environments with both effluents as produced water well as oil spills and their derivatives having toxicity to various organisms. With all the environmental issues has increased concern about water quality and has been used ecotoxicological tests with aquatic organisms to ecosystems to assess the toxicity of chemicals present in the water. In this context the microcrustacea Daphnia similis stands out as a freshwater organism very representative of the aquatic fauna of rivers and high sensitivity to environmental impacts. Thus, the present study aimed to evaluate the lethal toxicity of crude oil and produced water on this microcrustacea. The results showed that the microcrustacea presented high sensitivity to contaminants primarily crude oil. There was also the influence of environmental variables pH and temperature on the survival of organisms
Resumo:
Water is an essential element for life. The use of this element, to support the community, defines it as water resource. This feature is being misused and degraded by the dumping of highly contaminated effluents. The impoverishment of its quality poses a risk to human consumption. The necessity to manage this resource, treating the wastewater properly, requires the constant improvement of treatment systems. Another need is to adjust the cost of systems to the demands of communities with less financial clout. This study aimed to adapt and understand the systems of wetlands, improving its efficiency, in an attempt to collaborate with the enrichment of this technology. The practical evidence, with lab-scale prototypes, assembled in ETE Piracicamirim with urban sewage effluent contributed to highlight the problems and operating system design. The bibliographic review showed that several studies had effectiveness for treatment. But it was evident the need for better understanding of dimensioning definitions that better attempted to the answers into the project. Moreover, standardization of system conditions for the specific wastewater treatment is an interesting field, identified, for future studies yet contribute to environmental engineering and sanitation
Resumo:
The Guaraní aquifer has relevant importance both as a source of water for several urban centres and the development of agriculture and livestock. In recharge areas the aquifer is free and, therefore, subject to contamination of effluents and tailings deposited on soils that cover it. Thus, it becomes crucial not only its protection at all levels, as the knowledge of its degree of natural vulnerability. The present work used geostatistics modeling techniques to study the natural vulnerability of the Guaraní aquifer in the city of Rio Bonito, State of São Paulo, southeastern Brazil, where the Guarani aquifer is exposed. These techniques, extensively used in evaluation studies of mineral deposits and oil tanks, can be adapted to produce a spatial classification or a regionalisation of probabilistic indices of vulnerability. By ordinary kriging method maps of vulnerability classification were obtained. To determine the vulnerability of the aquifer was employed the Aquifer Vulnerability Index (AVI), which requires knowledge of unsaturated zone thickness and permeability. The final product was a map with probabilistic index of vulnerability of the Guaraní aquifer, which presented values between 0 to 0.33 years, framing the area studied in AVI class extremely high vulnerability
Resumo:
Currently exists a growing concern for the preservation of the environment Around the world, the environmental awareness in Brazil has strengthened during the past two decades. This concern in Brazil arises from the creation of mechanisms of supervision and punishment on the part of the environmental agencies. In order to meet the pertinent legislation many public and private companies have performed dehydration of waste generated in the process of treatment of industrial effluents, waste water and water treatment in order to reduce transport and disposal costs. The use of geotextile tubes has proven technically and economically feasible to be applied in various situations from water treatment to mining tailings. This work presents the solution adopted for an environmental liability in water treatment plant through the use of geotextile tubes to reduce the water content of the disposal. We evaluated the size distribution curves, Atterberg limits, and chemical composition of the residue. Found high concentrations of aluminum in the waste which would characterize environmental pollution if disposed off directly in nature with no treatment
Resumo:
Brazil has one of the largest cattle herds in the world, so the cattle slaughter is one of the most important economic activities in the Brazilian market. But this activity requires a high demand of water, resulting in serious problems about the correct disposal of wastewater generated in the process. This effluent has a high pollution load, becoming its receiving bodies (streams and rivers) unfit for various activities such as public water supply, recreation, fisheries. To minimize the environmental impacts of its industrial wastewater and fallow the local environmental legislation, refrigerators must make the treatment of these effluents. This study aimed to verify the efficiency of a enzymatic reactor, when occur hydrolysis of lipids present in the effluent industrial of an cattle slaughter industry. The treatment system used was composed of two separate reactors: one being the anaerobic fluidized bed reactor (AFBR), inoculated with immobilized enzymes on the matrix support, and the other by sequential batch reactor (SBR) inoculated with activated sludge. Whereas, the reactors have been developed and installed at the Wastewater Treatment Laboratory, Faculdade de Ciências e Tecnologia, UNESP, campus Presidente Prudente. The procedure operating occurred differently for each reactor: preparation and inoculation of enzyme granules, filling the reactor, hydrolysis, and AFBR emptying, filling, aerobic reaction, sedimentation, and emptying the SBR. We performed three experimental stages, with the first and second stage of the work were done reactor analyzes separately, and the third step of the analysis were made with the interconnected reactors... (Complete abstract electronic access below)
Resumo:
Worldwide environmental degradation is an undesirable byproduct resulting from the increasing demand for natural resources. Water sources are suffering intense contamination since they usually receive a huge amount of domestic and industrial effluents - which are mostly wasted without proper treatment - inserting a large number of pollutants in the environment, heavy metals included. Mercury holds great toxicological importance because, under some physicochemical conditions in a water environment, Hg (II) ion turns into methylated compounds stemming from this element, such as methylmercury CH3Hg, which is highly toxic for the aquatic community in which bioaccumulation occurs. Nowadays passive sampling techniques are being developed to enable the analytical procedures which are applied in environmental monitoring. Diffusive gradients in thin-films technique (DGT) has been proven an interesting tool for the determination of labile metal species due to its in situ application. The DGT technique consists of a piston-like device on which the following series of agents is disposed: a binding agent (conventionally Chelex 100 resin), a diffusive agent, usually a polyacrylamide gel, and a membrane filter. Nevertheless, the agents conventinally used for this technique don't usually show satisfactory results in mercury sampling. The main goal of this study was to evaluate the phosphate-treated cellulose membrane (Whatman P 81), an alternative material, as binding agent in the DGT to determine labile mercury fractions in aquatic systems. In this context, we conducted a study of the behavior of this material in relation with system variables, pH and ionic strength. Afterwards we performed immersions of the DGT devices in real and enriched samples and in situ aiming the determination of mercury
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)