196 resultados para Zeros of orthogonal polynomials
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (45)
- CaltechTHESIS (19)
- Cambridge University Engineering Department Publications Database (48)
- CentAUR: Central Archive University of Reading - UK (44)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (181)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (15)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (81)
- Queensland University of Technology - ePrints Archive (58)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (196)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (8)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (4)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (18)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (6)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.