261 resultados para Single Phase Grid Connected Inverter
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A series of four different powders ceria doped Ce1-xErxO2-delta (0.05 <= x <= 0.20) were synthesized by applying self-propagating reaction at room temperature (SPRT method). SPRT procedure is based on the self-propagating room temperature reaction between metal nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is known to assure very precise stoichiometry of the final product in comparison with a tailored composition. XRPD, Raman spectroscopy, TEM and BET measurements were used to characterize the nanopowders at room temperature. It was shown that all obtained powders were single phase solid solutions with a fluorite-type crystal structure and all powder particles have nanometric size (about 3-4 nm). Densification was performed at 1550 degrees C, in an air atmosphere for 2 h. XRPD, SEM and complex impedance method measurements were carried out on sintered samples. Single phase form was evidenced for each sintered materials. The best value of conductivity at 700 degrees C amounted to 1.10 x 10(-2) Omega(-1) cm(-1) for Ce0.85Er0.O-3(2-delta) sample. Corresponding activation energies of conductivity amounted to 0.28 eV in the temperature range 500-700 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Ferroelectric strontium barium niobate solid solutions had received great attention due to their excellent pyroelectric, electrooptic and photorefractive properties. Furthermore, they usually also present very interesting phase transition characteristics. In this work, polycrystalline single phase Sr 0.75 Ba 0.25 Nb 2 O 6 thin films were prepared by a hybrid chemical method and deposited on Pt/Ti/SiO 2 /Si substrates. The temperature dependence of dielectric constant was measured at different frequencies and bias field levels. The presence of two dielectric dispersion regions with relaxor characteristics was observed at distinct temperature ranges, corresponding to the ferro-paraelectric and to a structural phase transition at low temperatures, respectively. A specific dielectric dispersion region, associated with an incommensurate superstructure frequently observed in bulk samples, was not observed in this films probably due to their small grain sizes. © 2002 Taylor & Francis.
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
This paper presents the development and the main results for an interleaved boost rectifier operating as a special input power stage for a trolleybus type vehicle, allowing its feeding by alternate current (AC) or direct current (DC) distribution power systems. When feeding with two wires (single phase) alternate current distribution system, the converter accomplish active power factor correction, providing a relatively sinusoidal current with low total harmonic distortion (THD) and fully complying with IEC 61000-3-4 standards. In addition, a management control system promotes the required automatic operation changes for the proposed rectifier when the vehicle is changing from the DC distribution power system to the AC distribution power system and vice-versa, keeping its original electrical DC system characteristics for the adjustable speed driver sub-system. The main experimental results for a prototype rated at 150kW are presented, considering its application for a trolleybus with DC adjustable speed driver, demonstrating the proposed converter benefits and the possibility of AC feeding system for trolleybus type vehicle.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a technique to add flexibility in the control of power electronic converters. The power converter can function as an active power filter, as a local power source interface or perform both functions i. e. mitigate current disturbances and inject power into the grid simultaneously, configuring it as a multifunctional device. The main goal is to extract the full capability of the grid connected power electronic converter to achieve maximum benefits. To achieve this goal, the orthogonal current decomposition of the Conservative Power Theory is used. Each orthogonal current component is weighted by means of different compensation factors (k_i), which are set instantaneously and independently, in any percentage by means of the load performance factors (λ_i), providing an online flexibility in relation to compensation objectives. Finally, to validate the effectiveness and performance the proposed approach, simulations and experimental results are presented.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
The objective of this work is to conduct a comparative study between the fuse key and the single-phase seccionalizador, which are protective equipment used in an electricity distribution networks. This study has also the purpose to reduce the number of electrical power breakdown. Distribution networks are not free from faults, disturbances and failures, then the occurrence of adversities on the network, which may be transient or permanent faults, results in the interruption of electric power. Thus, there are protective systems of distribution networks, which aims to ensure that the electric system continues to function. The incidence of transient faults in the distribution network of this electricity company was used to generate immediate shutdown of customers due to the bad use of fuses as protective equipment by the reclosers. With the use of the fuse switch in the distribution network, there was the immediate shutdown of customers, however, using the single-phase seccionalizador as protective equipment by the reclosers, there are three attempts to restart the electricity power. As the attempts to restart the electricity power are able to eliminate a transient fault, not causing shutdown of any costumer, with the implementation of single-phase sectionalizers to replace the fuses, the number of company shutdowns due to transient faults was reduced by 47.6%
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Single real transformation matrices are tested as phase-mode transformation matrices of typical symmetrical systems with double three-phase and two parallel double three-phase transmission lines. These single real transformation matrices are achieved from eigenvector matrices of the mentioned systems and they are based on Clarke's matrix. Using linear combinations of the Clarke's matrix elements, the techniques applied to the single three-phase lines are extended to systems with 6 or 12 phase conductors. For transposed double three-phase lines, phase Z and Y matrices are changed into diagonal matrices in mode domain. Considering non-transposed cases of double three-phase lines, the results are not exact and the error analyses are performed using the exact eigenvalues. In case of two parallel double three-phase lines, the exact single real transformation matrix has not been obtained yet. Searching for this exact matrix, the analyses are based on a single homopolar reference. For all analyses in this paper, the homopolar mode is used as the only homopolar reference for all phase conductors of the studied system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.Methods: The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.Results: All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. on the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phaseGnRH- a administration group. The majority of the results presented heterogeneity.Conclusions: These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.