294 resultados para IR and Raman spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.
Photo luminescence: A probe for short, medium and long-range self-organization order in ZrTiO4 oxide
Resumo:
Photoluminescent disordered ZrTiO4 powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09 eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic alpha-PbO2-type structure in which Zr4+ and Ti4+ were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 degrees C, at which point the photoluminescence vanished. The Raman peak at close to 80-200 cm(-1) indicated the presence of locally ordered Ti-O-n and Zr-O-n polyhedra in disordered photoluminescent oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have reinvestigated (CH3OH)-C-13 as a source of far-infrared (FIR) laser emission using a CO2 laser as a pumping source. Thirty new FIR laser lines in the range 36.5 mum to 202.6 mum were observed and characterized. Five of them have wavelengths between 36.5 and 75 mum and have sufficient intensity to be used in LMR spectroscopy. Using Fourier-transform spectroscopic data in the infrared (IR) and FIR regions we have determined the assignment for 10 FIR laser transitions and predict nine frequencies for laser lines which have yet to be observed.
Resumo:
Barium strontium titanate (Ba0.8Sr0.2TiO3) thin films have been prepared on Pt/Ti/SiO2/Si substrates using a soft solution processing. X-ray diffraction and also micro-Raman spectroscopy showed that the Ba0.8Sr0.2TiO3 thin films exhibited a tetragonal structure at room temperature. The presence of Raman active modes was clearly shown at the 299 and 725 cm(-1) peaks. The tetragonal-to-cubic phase transition in the Ba0.8Sr0.2TiO3 thin films is broadened, and suppressed at about 35 degreesC, with a maximum dielectric constant of 948 (100 kHz). Electrical measurements for the prepared Ba0.8Sr0.2TiO3 thin films showed a remnant polarization (P-r) of 6.5 muC/cm(2), a coercive field (E-c) of 41 kV/cm, and good insulating properties. The dispersion of the refractive index is interpreted in terms of a single electronic oscillator at 6.97 eV. The direct band gap energy (E-g) and the refractive index (n) are estimated to be 3.3 eV and n = 2.27-2.10, respectively. (C) 2002 American Institute of Physics.
Resumo:
We performed temperature-dependent Raman scattering studies on K0.2Na0.8NbO3 ceramics and compared the results with those for NaNbO3. The wavenumbers associated with NbO6 vibrations suggest the existence of two phase transitions, as occurs with pure NaNbO3 ceramics. Although the disorder on the Na/K site does not change either the room temperature phase of K0.2Na0.8NbO3 or the sequence of phase transitions compared with NaNbO3, it changes the temperature of the lowest phase transition and strongly modifies the temperature of the antiferroelectric --> new phase II phase transition. Additionally, the linewidth analysis shows that the orientational mechanism is the dominant contribution to linewidth, although the anharmonic contribution is increased, when compared with NaNbO3, owing to the random distribution of potassium in the sodium niobate matrix. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of dopants commonly used in SnO2 varistor ceramics, such as CoO, Cr2O3 or Nb2O5, on the structural properties of SnO2 was investigated. Several SnO2-based ceramics containing only one of the dopants were prepared and characterized. Spectroscopic investigations [visible, near infrared (IR) and IR region] were performed to obtain information about dopants valence states inside the ceramics, as well as about their influence on electronic structure of the material. Structural properties were investigated by X-ray diffraction analysis and mechanisms of dopant incorporation were proposed. Obtained results were confirmed with results of the electrical measurements. Microstructural changes in doped ceramics were investigated by scanning electron microscopy (SEM) analysis that showed great differences in densities, grain size, and morphology of the SnO2 ceramics depending on type of dopants and their distribution. (C) 2004 Published by Elsevier B.V.
Resumo:
Cubic GaN layers are grown by molecular beam epitaxy on (001) GaAs substrates. Optical micrographs of the GaN epilayers intentionally grown at Ga excess reveal the existence of surface irregularities such as bright rectangular structures, dark dots surrounded by rectangles and dark dots without rectangles. Micro-Raman spectroscopy is used to study the structural properties of these inclusions and of the epilayers in greater detail. We conclude that the observed irregularities are the result of a melting process due to the existence of a liquid Ga phase on the growing surface.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
Ca0.95Sm0.05TiO3 (CT:Sm) powder was prepared by the polymeric precursor method (PPM). Order-disorder at short and long range has been investigated by means of Raman spectroscopy, X-ray diffraction (XRD), and photoluminescence emission (PL) experimental techniques. The broad PL band and the Sm emission spectrum measured at room temperature indicate the increase of structural order with annealing temperature. The measured PL emission reveals that the PL intensity changes with the degree of disorder in the CT: Sm. The electronic structures were performed by the ab initio periodic method in the DFT level with the hybrid nonlocal B3LYP approximation. Theoretical results are analyzed in terms of DOS, charge densities, and Mulliken charges. Localized levels into the band gap of the CT: Sm material favor the creation of the electron-hole pair, supporting the observed room-temperature PL phenomenon.
Resumo:
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Siloxane-polyoxypropylene (PPO) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with different sodium salts NaX (X = ClO4, BF4 or I). The effect of the counter-ion (X) on the chemical environment of the sodium ions and on the ionic conductivity of these hybrids was investigated by Na-23 NMR, small angle X-ray scattering (SAXS), complex impedance, Raman spectroscopy and differential scanning calorimetry (DSC). Results reveal that the different sodium salts have essentially the same effect on the nanoscopic structure of the hybrids. The formation of immobile Na+ cations involved in NaCl-like species could be minimized by using a low amount of HCl as hydrolytic catalyst. The differences in the ionic conductivity of hybrids doped with different sodium salts were correlated with the proportion of Na ions solvated by ether-type oxygen of the polymeric chains and by the carboxyl oxygen located in the urea groups of the PPO chain extremities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Films containing different volumes of latex of natural rubber (NR) in a fixed mass of poly (vinylidene fluoride) (PVDF) powder were fabricated by compressing under annealing a mixture of both materials without using any solvent. This is an important issue keeping in mind that these films have to be used in the future as biomaterials in different applications once the solvents that are used to dissolve the PVDF become toxic to human. The films with different percentage of latex in PVDF were characterized using microRaman scattering and Fourier transform infrared absorption (FTIR) spectroscopies, thermomechanical techniques using thermogravimetry (TG), differential scanning calorimetry (DSC), dynamical-mechanical analysis (DMA) and scanning electron microscopy (SEM). The results showed that the latex of NR and PVDF do not interact chemically, leading to the formation of a polymeric blend with high thermal stability and mechanical properties suitable for applications involving bone (prostheses, for instance). Besides, the results recorded using the micro-Raman technique revealed that for a fixed amount of PVDF the higher the amount of latex in the blend, the better the miscibility between both materials. Copyright (c) 2005 John Wiley & Sons, Ltd.