420 resultados para Fenologia foliar
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Brazilian campos rupestres (high-altitude grasslands) are very important on the world conservation scenario because of high species richness and endemism. These grasslands are regarded as threatened ecosystems due to intense, on-going disruption by man's activities. The aim of this study was to describe the reproductive and vegetative phenological patterns of six shrub species endemic to these grasslands in the Espinhaço Range, sympatric in Serra do Cipó, MG. We tested the relationship between species phenophases and local climate seasonality. We expect that the species phenophases are strongly correlated with variations of the dry and wet seasons. Observations were conducted monthly on reproductive (flowering, fruit production and dispersal) and vegetative (leaf fall and budding) phenophases. Given the combination of reproductive phenology, vegetative phenology, and seasonality, we observed four phenological strategies for the six species. Therefore this study revealed great diversity in phenological patterns, even when considering the small number of species sampled. Moreover, all species showed a significant seasonal pattern for the reproductive phenophases, with high concentrations of species reproducing during a given season, suggesting a key role of climate in defining phenological patterns in the campo rupestre grasslands.
Resumo:
Leaf area estimate may contribute to understand the relationships of interference among weeds and crops. The objective of this research was to obtain a mathematical equation to estimate the leaf area of Euphorbia heterophylla based on linear measures of the leaf blade. Correlation studies were carried out using the real leaf area and leaf length (C) and the maximum leaf width (L) of 200 leaf blades which were collected from several agroecosystems at Universidade Estadual Paulista in Jaboticabal, SP, Brazil. The evaluated statistic models were: linear Y = a + bx; simple linear Y = bx; geometric Y = ax b; and exponential Y = ab x. All of the evaluated models can be used for E. heterophylla leaf area estimation. The simple linear regression model is suggested using C*L and taking the linear coefficient equal to zero. Thus, an estimate of the leaf area of E. heterophylla can be obtained using the equation Af' = 0.6816*(C*L).
Resumo:
The objective of this study was to obtain a mathematical equation to estimate the leaf area of Panicum maximum using linear measures of leaf blade. Correlation studies were conducted involving the real leaf area (Sf), the main vein leaf length (C), and the maximum leaf width (L). The linear and geometric equations related to C provided good leaf area estimates. For practical reasons, the use of an equation involving only the C*L product is suggested. Thus, an estimate of P. maximum leaf area can be obtained by the equation Sf = 0.6058 (C*L), with the coefficient of determination R = 0.8586.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Several plants show morphological changes when exposed to environmental stress. We aimed to analyze comparative anatomy and EDX (energy dispersive x-ray detector) of Costus spiralis (Jacq.) Roscoe leaves from Jureia-Itatins Ecological Station (Peruibe, Sao Paulo), a preserved area, and Mogi River Valley (Cubatao, Sao Paulo) an affected area by pollution from the industrial complex of Cubatao. There were some significant differences in the leaves from the affected area, where they had a smaller abaxial hypoderm, larger size of adaxial hypoderm and larger central vascular core. There were damages in epicuticular wax deposition. The EDX analyses presented only differences in calcium and potassium concentration and presence of manganese in Cubatdo samples. Those leaves presented crystal deposition in the vascular core, probably because of the phosphogypsum residues from fertilizer industries.
Resumo:
The purpose of this study was to determine a shape factor to estimate area of leaflets of two peanut cultivars (IAC TATU ST, IAC RUNNER 886). Correlation studies were conducted involving real leaf area (Sf) and leaf length (C), maximum leaf width (L) and the product between C and L. For each cultivar was determined a form factor (f) by means of regression analysis between the product of the length by the width and the actual area of leaves and the correlation between leaf area estimated by the correction factor and direct measurement. All evaluated models (linear, exponential or geometric) provided good estimates of leaf area (above 87%). Linear models had the best fit, passing or not through the origin. From a practical viewpoint, it is suggested to use the linear model involving the C and L product, using a linear coefficient equal to zero, with values of factor f equal to 0.7111 and 0.7266 for IAC RUNNER 886 and IAC TATU ST, respectively. The method of dimensions is feasible for the estimation of leaf area for both peanut cultivars, for showing good r(2) values (0.97), with errors below 3%, even when used with independent data.